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ABSTRACT 

After a b r i e f  d i scuss ion  of the  var ious phases of the  

flow of a mixture of a gas and s m a l l  s o l i d  p a r t i c l e s  and the  s o l i d  

p a r t i c l e  behavior  i n  the  mixture,  the  fundamental equat ions of the  

mixture of the  gas and the  pseudo-fluid of s o l i d  p a r t i c l e s  are derived 

from both  the  continuum theory p o i n t  of view and the  simple k i n e t i c  

theory po in t  of view. Some new i n s i g h t s  about var ious terms due t o  

the e f f e c t s  of the  mixture are obtained. For in s t ance ,  the  p a r t i a l  

p ressure  of t he  pseudo-fluid of s o l i d  p a r t i c l e s  i s  n o t  n e g l i g i b l e  i f  

the  volume f r a c t i o n  of the  s o l i d  p a r t i c l e s  i s  n o t  n e g l i g i b l e .  

i n t e r n a l  energy of the  pseudo-fluid of s o l i d  p a r t i c l e s  contains  two 

The 

p a r t s :  one p a r t  depends on the  temperature of the  s o l i d  p a r t i c l e s  

and i t s  s p e c i f i c  h e a t  and the  o t h e r  p a r t  depends on the  random motion 

of t h e  p a r t i c l e s .  The i n t e r n a l  energy of the  pseudo-fluid of the  

s o l i d  p a r t i c l e s  due t o  the  random motion p e r  uni t  volume is  of the  

same order  of magnitude as the  p a r t i a l  p re s su re  of the  pseudo-fluid of 

s o l i d  p a r t i c l e s .  The r e l a t i o n s  between these  two po in t s  of view are 

given and discussed by comparing the  corresponding terms e Fina l ly  

w e  d i scuss  two s i m p l i f i e d  cases  of the  fundamental equat ions which 

c o n s i s t  of ( i )  t he  thermodynamics of the  mixture of s o l i d  p a r t i c l e s  

and a gas and ( i i )  the  case of neg l ig ib ly  s m a l l  volume f r a c t i o n  of 

s o l i d  p a r t i c l e s .  
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1. In t roduc t ion  

The s tudy  

been the  s u b j e c t  of 

t i m e .  In  the  e a r l y  

flaw w a s  one of t h e  

of t he  f l u i d  flow conta in ing  s o l i d  p a r t i c l e s  has 

s c i e n t i f i c  and engineer ing  research  f o r  a long 

days 

most i n t e r e s t i n g  r e sea rch  problems s i n c e  

the  sediment t r a n s p o r t  i n  open channel 

1 

J. Boussinesq’s t i m e  of 19 th  century: The sediment t r anspor t s  by 

water and by a i r  are important  i n  p o l l u t i o n  problems which are c u r r e n t l y  

i n t e r e s t i n g  problems I, 

which concern w i t h  the  f l u i d  flow wi th  s o l i d  p a r t i c l e s  such as 

f l u i d i z e d  beds, c e n t r i f u g a l  s e p a r a t i o n  of p a r t i c u l a r  matter from f l u i d s ,  

e l e c t r o s t a t i c  p r e c i p i t a t i o n  of dust ,  many chemical processings,  s o l i d  

par t ic le  motion i n  rocke t  exhaust  and dus t  flow i n  geophysical and 

a s t r o p h y s i c a l  problems. 

There are many o t h e r  engineer ing problems 

Even though the  dynamics of t he  f l u i d - p a r t i c l e  system has  

been ex tens ive ly  i n v e s t i g a t e d  f o r  a long t i m e ,  because of the complicated 

s i t u a t i o n ,  most of t he  i n v e s t i g a t i o n s  are empi r i ca l  i n  na tu re  and only 

i n  the  l as t  few yea r s  systemmatical  a n a l y t i c a l  treatments have been 

Since  the  phys ica l  s i t u a t i o n  is  very complicated, i t  i s  

n o t  p o s s i b l e  t o  develop a gene ra l  a n a l y t i c  approach which covers a l l  

the phases of t h e  f l u i d - p a r t i c l e  system. 

f l u i d - p a r t i c l e  system i n t o  several phases and each phase should be 

t r e a t e d  i n  a manner which is  most s u i t a b l e  f o r  i t ,  It i s  d e s i r a b l e  

t o  desc r ibe  b r i e f l y  the var ious  phases of t h e  f l u i d - p a r t i c l e  system, 

p a r t i c u l a r l y  f o r  t he  gas-sol id  p a r t i c l e  mixture f i r s t  and t o  def ine  the 

W e  have t o  d iv ide  the 

1 
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phases which w i l l  be  s t u d i e d  i n  t h i s  paper. 

The var ious  phases of t he  gas-sol id  par t ic les  can be des- 

c r i b e d  c l e a r l y  by consider ing the  burning of a w e l l  packed gun powder 

o r  by consider ing the f l u i d i z e d  beds of w e l l  packed p a r t i c l e s ,  The 

flow condi t ions  f o r  t hese  two cases may be divided i n t o  t h e  following 

f i v e  phases : 

(E) Porous medium phase. 

For s i m p l i c i t y ,  we cons ider  a gas flowing through a w e l l  

packed p a r t i c l e  bed by burning the  p a r t i c l e s  as the  case of gun powder 

o r  by means of a p res su re  g rad ien t  as i n  t h e  case of f l u i d i z e d  bed. 

I f  t h e  rate of t he  gas flow is  very  small, the  w e l l  packed s o l i d  

p a r t i c l e s  w i l l  n o t  be  d i s tu rbed ,  the gas motion is  t h e  same as t h a t  

through a porous medium, 

f i x e d  i n  space.  This phase is usua l ly  c a l l e d  the f ixed  bed s t a g e .  W e  

s h a l l  n o t  cons ider  t h i s  phase i n  t h i s  paper.  

We may consider t he  s o l i d  p a r t i c l e s  as 

(11) Sedimentation Phase e 

When t h e  flow rate inc reases ,  some of the s m a l l  p a r t i c l e s  

may f i r s t  move wi th  the gas flow. As the  flow rate i n c r e a s e s ,  t he  

amount of t h e  s o l i d  p a r t i c l e s  moved wi th  the gas flow inc reases .  From 

now on, w e  may ca l l  i t  t h e  sedimentat ion phase i n  whch the s o l i d  

p a r t i c l e s  are t r anspor t ed  by the  f l u i d  flow. A t  f i r s t  t he  s o l i d  

p a r t i c l e s  may n o t  be considered as a pseudo-fluid and the ind iv idua l  

p r o p e r t i e s  of t hese  s o l i d  p a r t i c l e s  i n  the  gas flow p l a y  important  



3 

r o l e  i n  the gas flow. W e  s h a l l  n o t  d i scuss  t h i s  phase i n  t h i s  paper. 

(111) e F l u i d i z a t i o n  Phase 

A s  t he  rate of t he  f l u i d  flow reaches a c r i t i ca l  value, 

c a l l e d  the flow f o r  f l u i d i z a t i o n ,  a t  which t h e  cha rac t e r  of t h e  solid 

p a r t i c l e s  changes abrupt ly  t o  a pseudo-fluid, waves can be  set i n  the 

s o l i d  p a r t i c l e  bed. The Pseudo-fluid has s imi la r  behavior  as ordinary 

f l u i d  such as t o  form a level s u r f a c e .  

dense phase of t he  f l u i d i z e d  bed. Ord ina r i ly  the o v e r a l l  dens i ty  of 

t he  mixture of t h e  s o l i d  and t h e  gas decreased only f r a c t i o n a l l y  - 

say 10% t o  50% are compared w i t h  the  f i x e d  bed. I n  o the r  words, t he  

volume occupied 

the  t o t a l  volume of t he  mixture. 

are going t o  cons ider .  

It  i s  usua l ly  c a l l e d  the 

by the  s o l i d  i n  the mixture would be  10% t o  50% of 

This i s  one of t h e  phases which we 

( I V )  e Slugging Phase. 

Fu r the r  i nc rease  of t he  f l u i d  flow rate would cause the flow 

of t h e  mixture i r r e g u l a r .  For in s t ance ,  bubbles of t he  gas rise 

through the packed s o l i d  p a r t i c l e s  and b u r s t  and more and more p a r t i c l e s  

w i l l  be  c a r r i e d  o u t  by the  gas. I n  p r i n c i p l e ,  t he  behavior of t h e  

mixture  is the  same as t h a t  i n  t h e  f l u i d i z a t i o n  phase bu t  the a c t u a l  

motion may be  due t o  some i n s t a b i l i t i e s  of t he  flow of the mixture . 
Hence t h i s  is  a l s o  the case which w e  are going t o  consider.  

5 
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(V) Two Phase Flow of A Mixture of So l id  
P a r t i c l e s  and F lu id .  

For s t i l l  f u r t h e r  i nc reases  of t h e  flow rate, t h e  s o l i d  

p a r t i c l e s  occupy less than 5% of t h e  t o t a l  volume and mix w e l l  w i th  

t h e  gas i n  t h e  flow f i e l d .  This is known as the  d i l u t e  phase of t he  

two phase flow of a mixture  of s o l i d  p a r t i c l e s  and gas. O r  w e  simply 

ca l l  i t  t h e  two phase flow of a mixture of s o l i d  p a r t i c l e s  and gas i n  

a narrow sense .  Many l i t e r a t u r e  ( re ference  3 , 4  and 6) of gas-sol id  

mixture  d i scuss  t h i s  d i l u t e  phase. This i s  a l s o  a phase which w e  are 

i n t e r e s t e d  i n .  

I n  p r i n c i p l e ,  the fundamental equations of the mixture of 

t h e  gas and s o l i d  p a r t i c l e s  are t h e  same as long as the s o l i d  

p a r t i c l e s  may be considered as a pseudo-fluid. 

t o  d e r i v e  a set of fundamental equat ions  of t h e  mixture of the  gas 

and s o l i d  p a r t i c l e s  which covers a l l  t h e  t h r e e  phases;  f l u i d i z a t i o n ,  

s lugging  and d i l u t e  phases of t h e  mixture  of gas and s o l i d  p a r t i c l e s .  

The fundamental equat ions  of t h e  mixture of gas and s o l i d  particles 

have been d iscussed  by many au tho r s ,  p a r t i c u l a r l y  by Marble 

( r e fe rence  4 ,  1963), Murxq ( r e fe rence  5, 1965), So0 ( re ference  6 ,  1967) 

and Vasiliev ( r e fe rence  7 ,  1969)-  Those e a r l y  a t t e m p t s  f o r  de r iva t ions  

of t h e  fundamental equations of t he  mixture of gas and s o l i d  p a r t i c l e s  

w e r e  reviewed by Murray 

them he re .  A f t e r  s tudying  t h i s  l i t e r a t u r e ,  p a r t i c u l a r l y  re ferences  

4 - 7 ,  w e  f i n d  t h a t  t he re  are many fundamental concepts which are n o t  

Hence i t  i s  poss ib l e  

5 6 and So0 and w e  are no t  going t o  r epea t  
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c l e a r l y  d iscussed  and some of which are misunderstood. 

a systemmatic de r iva t ion  of t he  fundamental equat ions of t he  mixture 

of gas and s o l i d  p a r t i c l e s  is necessary before  we may s tudy the  flow 

problems of t h e  mixture of gas and s o l i d  particles. 
4 

is the  f i r s t  a t t e m p t  t o  apply the  modem 

We do f e e l  t h a t  

The paper  by Marble 

technique of f l u i d  mechanics t o  the  research  of the  two phase flow of 

gas and s o l i d  p a r t i c l e s .  Earb le  introduced many important concepts 

of the problem i n  h i s  ana lys i s  such as the  in t roduc t ion  of the  

temperature of s o l i d  p a r t i c l e s  and t h e  diameter of s o l i d  p a r t i c l e s  i n  

the  d i s t r i b u t i o n  func t ion  o f  s o l i d  p a r t i c l e s .  

i n  the development of fundamental equat ions of t he  mixture of gas 

and s o l i d  p a r t i c l e s ,  However, Marble i s  l i m i t e d  t o  the  case where 

the volume f r a c t i o n  of s o l i d  p a r t i c l e s  

mixture. Hence his r e s u l t s  are app l i cab le  t o  the  l i m i t i n g  case of 

t h e  d i l u t e  phase only.  

the volume f r a c t i o n  of s o l i d  p a r t i c l e s  Z may have s i g n i f i c a n t  e f f e c t  

on the flow f i e l d  of t he  mixture of gas and s o l i d  p a r t i c l e s .  

are going t o  extend Marble's a n a l y s i s  f o r  t he  case of f i n i t e  volume 

f r a c t i o n  of p a r t i c l e s  s o  t h a t  our fundamental equat ions may be 

app l i cab le  f o r  a l l  th ree  phases;  f l u i d i z a t i o n ,  s lugging and d i l u t e  

phases which we are i n t e r e s t e d  in .  

These are very important 

Z is  neg l ig ib ly  s m a l l  i n  the 

It has been shown c l e a r l y  by Rudinger' that 

We 

Z 

Murray was  t he  f i r s t  one who der ived systemmatically the  

fundamental equat ions of t he  mixture f l u i d  (or  gas) and s o l i d  p a r t i c l e s  

wi th  f i n i t e  volume f r a c t i o n  Z from the  continuum theory. 
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Some i n t e r e s t i n g  r e s u l t s  have been obtained.  However, s i n c e  he d id  

n o t  use  t h e  modern technique of f l u i d  mechanics, he made some 

fundamental e r r o r s  such t h a t  he assumed t h a t  t h e  p a r t i a l  p re s su re  of 

s o l i d  p a r t i c l e s  i s  n e g l i g i b l e  and a r b i t r a r i l y  replaced the  p a r t i a l  

p re s su re  of gas by the  t o t a l  p re s su re  of t h e  mixture.  The p a r t i a l  

p re s su re  of the  s o l i d  p a r t i c l e s  i s  d i r e c t l y  p ropor t iona l  t o  t h e  volume 

f r a c t i o n  2 which has  been shown i n  r e fe rence  8 by Rudinger. W e  p lan 

t o  de r ive  t h e  fundamental equat ions of the  mixture of gas and s o l i d  

p a r t i c l e s  by both the cmtinuum theory and the  k i n e t i c  theory so  t h a t  

err3rs made by Murray may be  shown c l e a r l y  and some i n s i g h t  about the  

p r o p e r t i e s  of t he  pseudo-fluid of s o l i d  p a r t i c l e s ,  such as the  i n t e r n a l  

energy of t h e  pseudo-fluid of s o l i d  p a r t i c l e s  which depends on both  

t h e  temperature of t h e  s o l i d  p a r t i c l e s  and the random motion of 

t h e  P a r t i c l e s ,  may be  obtained.  
6 I n  h i s  book, So0 emphasized t h e  importance of t h e  d i s t r i b u t i o n  

of t h e  s i z e  of s o l i d  p a r t i c l e s  i n  t h e  fundamental equat ions of t h e  

mixture  of t h e  gas  and s o l i d  p a r t i c l e s .  

a r b i t r a r i l y  a set of fundamental equat ions of m u l t i f l u i d  theory wi th  

s o l i d  p a r t i c l e s  of each s i z e  as a spec ie s  i n  t h e  mixture.  This set of 

equat ions  is  u s e l e s s  because i n  genera l  t h e  d i s t r i b u t i o n  of s i z e  of the 

s o l i d  p a r t i c l e s  i s  more o r  less continuous and thus  we  cannot use  

i n f i n i t e  number of s i z e s ,  

t h e  diameter of t h e  s o l i d  p a r t i c l e s  as a parameter i n  the  d i s t r i b u t i o n  

f u n c t i o n  of t h e  s o l i d  p a r t i c l e s  i s  a much b e t t e r  t reatment  i n  consider ing 

t h e  e f f e c t s  of d i s t r i b u t i o n  of s i z e  of t h e  s o l i d  p a r t i c l e s ,  So0 did  not  

Hence So0 wrote formally and 

W e  f e e l  t h a t  Marble's ana lys i s  by consider ing 
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d i scuss  how one could determine t h e  spec ie s  of t h e  s o l i d  p a r t i c l e s  f o r  

any known d i s t r i b u t i o n  of s i z e  of s o l i d  p a r t i c l e  i n  order  t h a t  h i s  equa- 

t i o n s  may b e  u s e f u l .  

s o l i d  p a r t i c l e s  i n  our  ana lys i s .  

as one spec ie s  i n  our  mixture  wi th  i t s  diameter as a parameter i n  t h e  

d i s t r i b u t i o n  func t ion  of t h e  s o l i d  p a r t i c l e s .  

W e  s h a l l  u se  a s ta t is t ical  average s i z e  of t h e  

Hence w e  consider  t h e  s o l i d  p a r t i c l e s  

Vasiliev i n  r e fe rence  7 discussed some theo r i e s  of two phase 

flow of f l u i d  and s o l i d  p a r t i c l e s  by Russian s c i e n t i s t s .  

main interest i s  hydraul ics ,  he considered only t h e  incompressible f l u i d  

case, i.e.,  t h e  mixture  of a l i q u i d  and s o l i d  p a r t i c l e s .  Hence h i s  energy 

equat ion  i s  t h e  k i n e t i c  energy of t h e  l i q u i d  and t h e  s o l i d  p a r t i c l e s  

which i s  no t  an independent r e l a t i o n  and which may be  der ived  from the  

equat ion  of motion. H e  d i d  no t  d i scuss  t h e  energy equat ion f o r  t h e  

temperature d i s t r i b u t i o n  of t h e  mixture ,  which i s  an independent r e l a t i o n  

from t h e  equat ion  of motion and which depends on t h e  temperature o f  t he  

s o l i d  p a r t i c l e s  and t h e  random motion of t h e  s o l i d  p a r t i c l e s .  However, 

Vasiliev d iscussed  some i n t e r e s t i n g  r e s u l t s  of t u rbu len t  f low of t h e  two 

phase flow which w e  are n o t  going t o  d i scuss  i n  t h i s  paper. 

de r ive  t h e  fundamental equat ions of t h e  laminar flow of t h e  mixture of 

t he  gas  and s o l i d  p a r t i c l e s ,  i t  i s  poss ib l e  t o  de r ive  t h e  corresponding 

tu rbu len t  f low equat ions i n  t h e  s tandard  mannero 

Since Vasiliev's 

After w e  

I n  t h e  modern technique of f l u i d  mechanics, we s tudy  t h e  funda- 

mental  equat ions of f l u i d  mechanics from t h e  microscopic ( k i n e t i c  theory) 

and t h e  macroscopic ( the  continuum theory) p o i n t s  of view, 

s h a l l  d i scuss  t h e  fundamental equat ions  of t h e  mixture o f  t h e  gas and t h e  

s o l i d  p a r t i c l e s  from t h e  continuum theory §3 and t h e  simple k i n e t i c  theory 

Hence w e  
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§ 4 @  The complete k i n e t i c  theory of a mixture  of gas and s o l i d  p a r t i c l e s  

has  n o t  been developed, It i s  n o t  t h e  i n t e n t i o n  of t h e  author to 

develop a complete k i n e t i c  theory of t h e  mixture  of gas and s o l i d  

p a r t i c l e s  i n  t h i s  paper,  

fundamental equat ions  of t h e  mixture  of gas and s o l i d  i n  t h e  continuum 

What w e  would l i k e  t o  do i s  t o  de r ive  t h e  

theory from t h e  t r a n s f e r  equat ions  of t h e  Boltzmann equat ion of t h e  

mixture  s o  t h a t  w e  may have some i n s i g h t  of va r ious  terms i n  t h e  funda- 

mental  equat ions which cannot be  obtained from the  continuum theory 

a lone  such as t h e  p a r t i a l  p ressure  of t h e  s o l i d  p a r t i c l e s  a n d . t h e  in-  

t e r n a l  energy of t h e  s o l i d  p a r t i c l e s .  

I n  development of both t h e  continuum theory of t h e  pseudo-fluid 

of t h e  s o l i d  p a r t i c l e  and t h e  k i n e t i c  theory of t he  random motion of t he  

s o l i d  p a r t i c l e ,  w e  have t o  use  the behaviours of t h e  s o l i d  p a r t i c l e s  i n  

t h e  gas  flow as a b a s i s ,  I n  f a c t ,  t h e  s o l i d  p a r t i c l e  motion i n  a f l u i d  

i s  very  complicated ’ ’ 
motion, t h e  drag and hea t  t r a n s f e r  i n  § 2 #  

’ ’ lo, We s h a l l  b r i e f l y  d i scuss  t h e  p a r t i c l e  

2.  P a r t i c l e  behaviour i n  t h e  mixture  of a gas  and s o l i d  p a r t i c l e s .  

I n  t h e  two phase flow of s o l i d  p a r t i c l e s  and a f l u i d ,  w e  u sua l ly  

assume t h a t  t h e  s o l i d  p a r t i c l e s  are of small s i z e ,  For in s t ance ,  the 

mean p a r t i c l e  s i z e  i n  t h e  exhaust of a rocke t  engine i s  of the order  of a 

micron i n  diameter ,  

molecular  s i z e .  

gases  such t h a t  t h e  motion of t h e  p a r t i c l e s  depends on t h e  fo rce  p o t e n t i a l  

around a molecule. 

flow should be  determined by t h e  ord inary  f l u i d  dynamics of a f l u i d  f low 

However, t h i s  s i z e  i s  s t i l l  much l a r g e r  than t h e  

We cannot u se  t h e  usua l  approach i n  k i n e t i c  theory of 

The behaviour of t hese  s o l i d  p a r t i c l e s  i n  the  f l u i d  
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around a body. 

understand i t  i n  d e t a i l  y e t ,  because t h e  d e t a i l s  of t h e  l o c a l  flow f i e l d  

depend on t h e  p a r t i c l e  Reynolds number, p a r t i c l e  Mach number, Knudsen 

number, shape and s i z e  of t h e  p a r t i c l e s  and t h e  i n t e r a c t i o n  between 

p a r t i c l e s .  W e  have t o  make some approximations before  w e  could develop 

any reasonable  theory of t he  two phase flow of gas and s o l i d  p a r t i c l e s .  

Even though t h e  a c t u a l  s i z e  of t h e  p a r t i c l e s  i s  no t  uniform, i n  t h e  two 

phase theory,  w e  may use  some s ta t i s t ica l  average s i z e  of t h e  p a r t i c l e s  

as a f i r s t  approximation. I n  o t h e r  words, i n  a f i r s t  approximation, w e  

cons ider  t h a t  t h e  s i z e  of t h e  p a r t i c l e s  are t h e  same. 

theory,  we should inc lude  t h e  p a r t i c l e  s i z e  d i s t r i b u t i o n  func t ion  i n  t h e  

theory,  

Bodies of  d i f f e r e n t  shape have d i f f e r e n t  drag c o e f f i c i e n t  and hea t  t rans-  

f e r  ra te ,  I n  genera l ,  t h e  shapes of t h e s e  p a r t i c l e s  are not  i d e n t i c a l .  

A s  a f i r s t  approximation, w e  may assume t h a t  t h e  p a r t i c l e s  are a l l  of the 

s p e r i c a l  shape. 

diameter d as t h e  average drag c o e f f i c i e n t  of a l l  p a r t i c l e s .  We s h a l l  

d i scuss  some o t h e r  e f f e c t s  of t h e  shape of t h e  p a r t i c l e s  later. 

t h i r d  d i f f i c u l t y  i n  t h e  t reatment  of t h e  p a r t i c l e  motion i s  the  i n t e r -  

a c t i o n  between the  p a r t i c l e s .  A t  t h e  present  tine, only the  theory of 

p a r t i c l e - f l u i d  system without  p a r t i c l e  i n t e r a c t i o n  has  been developed. 

These t h e o r i e s ,  s t r i c t l y  speaking, hold t rue  only f o r  t he  d i l u t e  phase 

of t h e  mixture  of gas and s o l i d  p a r t i c l e s .  It i s  i n t e r e s t i n g  t o  n o t i c e  

t h a t  t h e  theory of d i l u t e  phase of a mixture of gas and s o l i d  p a r t i c l e s  

may b e  used f o r  t h e  case where t h e  p a r t i c l e s  are small l i q u i d  d rop le t s  

as a f i r s t  approximation. 

This problem i s  very  complicated i t s e l f  and w e  do no t  

For a more accu ra t e  

The next  complicated po in t  i s  t h e  shape of t h e  p a r t i c l e s ,  

We may consider  the drag c o e f f i c i e n t  of a sphere  of 

The 

It would be b e t t e r  i f  some e f f e c t s  of t n e  
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i n t e r a c t i o n  between p a r t i c l e s ,  even empir ica l ly ,  are taken i n t o  account 

f o r  t h e  case of dense phase of t h e  two phase flow, 

From our  experience on ord inary  f l u i d  dynamics, t h e  Xavier-Stokes 

equat ions  which may be  der ived from k i n e t i c  theory of gases are app l i cab le  

t o  l i q u i d .  

t h e  d i l u t e  phase of t h e  dynamics of t h e  mixture  of gas and p a r t i c l e s  

may b e  used f o r  t h e  dense phase t o o  as long as t h e  p a r t i c l e s  may be 

considered as a pseudo-fluid. 

f o r  t h e  dynamics of t h e  p a r t i c l e - f l u i d  system from t h e  continuum theory,  

w e  do n o t  make any s p e c i f i c  assumption about t h e  number dens i ty  of t h e  

p a r t i c l e s .  Hence t h e  fundamental equat ions should be  v a l i d  f o r  bo th  t h e  

dense and t h e  d i l u t e  phase, except  t h a t  t h e  average drag f o r c e  of t h e  

Hence i t  i s  usua l ly  assumed t h a t  t h e  fundamental equat ion of 

When we de r ive  t h e  fundamental equat ions 

par t ic les  and t h e  t r a n s p o r t  c o e f f i c i e n t s  of t h e  mixture should be d i f f e r e n t  

i n  t h e s e  two phases,  

From t h e  above approximations,  w e  need t o  know t h e  drag c o e f f i c i -  

e n t  and t h e  h e a t  t r a n s f e r  rate of a sphere of diameter d t o  develop t h e  

theory of t h e  dynamics of p a r t i c l e - f l u i d  system. 

l i t e r a t u r e  f o r  t h e  drag c o e f f i c i e n t  and t h e  h e a t  t r a n s f e r  rate of a sphere,  

w e  f i n d  t h a t  our  knowledge is  f a r  from complete. 

e x c e l l e n t  review of our  knowledge from t h i s  problem and i t  shows many gaps 

of our  knowledge on t h i s  s u b j e c t ,  

sphere  depends on t h e  Reynolds number, Mach number and Knudsen number of 

t h e  sphere  as w e l l  as t h e  flow condi t ion ,  such as the  turbulence i n  the  

f r e e  stream, t h e  a c c e l e r a t i o n  of t h e  sphere  and o the r  f a c t o r s .  Because 

of t h e  i n t e r a c t i o n s  between many of t hese  f a c t o r s ,  i t  i s  no t  poss ib l e  t o  

g ive  a I n  order  t o  see the  e s s e n t i a l  

f e a t u r e s  of t h e s e  f a c t o r s ,  w e  are going t o  examine these  e f f e c t s  s epa ra t e ly .  

When w e  examine t h e  

Reference 9 g ives  an 

I n  s h o r t ,  t h e  drag c o e f f i c i e n t  of a 

complete account of a l l  t h e  f a c t o r s ,  
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The most important  f a c t o r  f o r  t h e  drag c o e f f i c i e n t  is the  

Reynolds number of the sphere Re = Ud/v 

of t h e  diameter d of t h e  sphere  t i m e s  a t y p i c a l  v e l o c i t y  U divided 

by t h e  c o e f f i c i e n t  of kinematic  v i s c o s i t y  of t h e  f l u i d  

t o  see t h e  e f f e c t s  of Reynolds number on t h e  drag c o e f f i c i e n t ,  w e  con- 

s i d e r  a uniform s t eady  flow of v e l o c i t y  

diameter d i n  an i n f i n i t e  domain. We f u r t h e r  assume t h a t  t h e  f l u i d  

i s  incompressible  and i so thermal  s o  t h a t  t h e  e f f e c t  of Mach number w i l l  

no t  b e  considered. W e  f u r t h e r  assume t h a t  t h e  Knudsen number K which 

is  t h e  r a t i o  of t h e  mean f r e e  pa th  of t h e  f l u i d  t o  t h e  diameter of 

t he  sphere  is  much.smaller than un i ty ,  t h e  r a r e f i c a t i o n  e f f e c t  of t h e  

f l u i d  is  then n e g l i g i b l e ,  For t h i s  s imple case, t h e  drag c o e f f i c i e n t  

of t h e  sphere  is  a func t ion  of Reynolds number only as shown i n  Fig. 1. 

This curve i s  obtained experimental ly .  There i s  no complete t h e o r e t i c a l  

r e s u l t  of t h e  whole curve,  even though w e  know f a i r l y  w e l l  t h e  flow 

p a t t e r n  a t  va r ious  Reynolds number ranges.  

which is  def ined as the  r a t i o  

v . In order  

U passing over a sphere of 

Lf 

When t h e  Reynolds number Re is  very  s m a l l ,  say below 0.1, 

t h e  i ne r t i a l  terms are n e g l i g i b l e  and t h e  drag c o e f f i c i e n t  of a sphere 

w a s  f i r s t  obtained by Stokes' who gave t h e  fol lowing formula: 

31'rUdp 24 24 

Re 
= - = -  - Drag = 

2 2  Ud/V 
'D - %pU2%rd2 kipU %d IT 

A t  ve ry  low Reynolds numbers, t h e  flow f i e l d  about t h e  sphere  has a f o r e  

and a f t  symmetry. As t he  Reynolds number inc reases ,  i n e r t i a l  f o r c e  

begins  t o  p l ay  a r o l e .  

sphere.  

approximation'' and t h e  drag c o e f f i c i e n t  is  given by the  following formula : 

Above Re = O c l ,  t h e r e  w i l l  b e  a wake behind t n e  

For Reynolds numbers less than un i ty ,  w e  may use t h e  Oseen's 



24 3Re 
CD = - (1 ++ 

Re 

A s  t h e  Reynolds number Re i s  l a r g e r  than un i ty ,  t h e  drag 

curve of Fig. 1 is e n t i r e l y  empir ica l  i n  na ture .  The flow p a t t e r n  

around t h e  sphere becomee complicated. As t h e  Reynolds number in- 

creases above 0,1, vor t ex  r i n g s  may be formed a t  t h e  rear of t h e  

sphere  and as 

vor t ex  street behind t h e  sphere  which w i l l  even tua l ly  be developed 

i n t o  a wake. 

l a y e r  flow on t h e  sphere ,  A t  Reynolds number less than t h e  c r i t i ca l  

Reynolds number which depends on t h e  f r e e  stream turbulence and 

5 6 which i s  u s u a l l y  of t h e  order  of 10 t o  10 , t h e r e  i s  a l a r g e  wake due 

t o  t h e  s e p a r a t i o n  of t h e  laminar  boundary l a y e r  on t h e  sphere. 

c o e f f i c i e n t  is  a cons tan t  over a . la rge  range of Reynolds number a t  a 

Re i nc reases  f u r t h e r ,  w e  have t h e  w e l l  known Karman 

For h igh  Reynolds numbers, t h e r e  w i l l  be a boundary 

Rc 

The drag 

va lue  of 0.5. A t  t h e  c r i t i ca l  Reynolds number, t h e  drag c o e f f i c i e n t  

of t h e  sphere drops from 0.5 t o  0.1 and then  remains a t  a cons tan t  va lue  

of 0.1 f o r  a l a r g e  range of R e  above Rc e Above t h e  c r i t i c a l  Reynolds 

number, t h e  boundary l a y e r  on t h e  sphere i s  tu rbu len t .  Since the  a b i l i t y  

t o  resist s e p a r a t i o n  by t h e  tu rbu len t  boundary l a y e r  i s  l a r g e r  than t h a t  

of t h e  laminar  boundary l a y e r ,  t h e  f low w i l l  s e p a r a t e  from t h e  

a la ter  poin t .  As a r e s u l t ,  t h e  wake behind t h e  sphere is smaller and t h e  

drag of t h e  sphere  i s  a l s o  smaller. 

The drag curve given i n  Fig. 1 is  f o r  t h e  s teady  flow i n  an 

i n f i n i t e  domain. In a c t u a l  two phase flow, t h e  v e l o c i t y  of t h e  f l u i d  

sphere a t  

is  n o t  uniform, 

Hence, s t r i c t l y  speaking, w e  should cons ider  t h e  a c c e l e r a t i o n  e f f e c t s  on 

Hence t h e  p a r t i c l e s  are moving i n  an acce le ra t ing  stream. 
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t h e  drag  c o e f f i c i e n t  of t h e  sphere. 

t h e  f l u i d  and p a r t i c l e  a c c e l e r a t i o n s  depends on t h e  flow f i e l d .  

words, i t  depends on t h e  change of magnitude and d i r e c t i o n  of t he  flow 

v e l o c i t y  around t h e  p a r t i c l e .  

The unsteady drag a s soc ia t ed  wi th  

I n  o the r  

No gene ra l  s o l u t i o n  of t h i s  problem i s  

a v a i l a b l e .  Hinze and Tchen discussed t h e  case f o r  slow motion of a 

s p h e r i c a l  particle i n  an a c c e l e r a t i n g  flow, I2’l3 which i s  d i f f i c u l t  t o  

use i n  t h e  development of t h e  theory  , o f  two phase flow. For tuna te ly ,  

because of t h e  s m a l l  s i z e  p a r t i c l e s  and low r e l a t i v e  a c c e l e r a t i o n  between 

f l u i d  and p a r t i c l e s  i n  many p r a c t i c a l  problems, w e  may neg lec t  t h e  ac- 

c e l e r a t i o n  e f f e c t s  and use  t h e  s tokes  formula as a f i r s t  approximation 

t o  develop t h e  theory of t h e  dynamics of t h e  f l u i d - p a r t i c l e  system. 

When t h e  volume f r a c t i o n  of t h e  s o l i d  p a r t i c l e s  Z is above 

0.1, it i s  adv i sab le  t o  modify t h e  express ion  of drag c o e f f i c i e n t  of t h e  

p a r t i c l e s  i n  t h e  mixture  of gas and s o l i d  p a r t i c l e s .  There is no 

t h e g r e t i c a l  a n a l y s i s  f o r  such modi f ica t ion  b u t  some empir ica l  formulas nave 

been suggested by va r ious  au thors  (see chapter  5 of r e fe rence  6 ) .  When 

t h e  p a r t i c l e  Reynolds number i s  below 0.1, t h e  following drag 

i s  recommended: 

formula 

19 

Z 
2 When Z > 0.1 : CD = 200 

(1-Z) Re 

and When Z < 0,1 : CD = 24/Re * 

W e  s h a l l  use Eq, (3) i n  some of numerical s o l u t i o n  f o r  our 

In  these  s tudy  i n  t h e  l u n a r  a sh  flow. l7 

see t h e  e f f e c t s  of t h e  drag c o e f f i c i e n t  due t o  volume f r a c t i o n  of t h e  

numerical c a l c u l a t i o n s ,  w e  w i l l  

s o l i d  p a r t i c l e s .  
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Besides t h e  e f f e c t s  of Reynolds number on t h e  p a r t i c l e s ,  

t h e r e  are many o t h e r  f a c t o r s  which would a f f e c t  t h e  drag c o e f f i c i e n t  of 

t h e  sphere.  These f a c t o r s  are as follows: 

( i )  Mach number of t h e  p a r t i c l e .  The Mach number g ives  the  e f f e c t s  

of compress ib i l i t y  on t h e  drag of t h e  sphere.  

change as t h e  Mach number inc reases ,  p a r t i c u l a r l y  when t h e  flow i s  changed 

The flow p a t t e r n  would 

from low subsonic  t o  a supersonic  case. As a r e s u l t ,  t h e  drag of t h e  

sphere  would change too. However, s i n c e  t h e  v e l o c i t y  which determines t h e  

Mach number of t h e  sphere i n  t h e  two phase flow case i s  t h e  d i f f e rence  

of v e l o c i t i e s  of t h e  p a r t i c l e  and t h a t  of t h e  f l u i d .  Thus i n  gene ra l ,  

we  do no t  expect a l a r g e  d i f f e r e n c e  of t hese  v e l o c i t i e s .  The drag co- 

e f f i c i e n t  f o r  low Mach number such as t h a t  given by Fig. 1 should be 

s u f f i c i e n t l y  accura te .  

( i i )  Free stream turbulence.  The f r e e  stream turbulence has a l a r g e  

e f f e c t  on t h e  drag of t h e  sphere  i f  t h e  Reynolds number i s  near  t h e  

c r i t i ca l  va lue  Rc . 
t h e  e f f e c t  of t h e  f r e e  stream turbulence  should be s m a l l  as f a r  as the  

I f  t h e  Reynolds number of t he  p a r t i c l e  i s  very  s m a l l ,  

i n t e r a c t i o n  of t h e  p a r t i c l e  and t h e  f l u i d  i s  concerned. 

( i i i )  Rota t ion  of t h e  p a r t i c l e s .  I f  t h e  sphere is r o t a t i n g  i n  t h e  

f l u i d  flow, i t  would produce a l i f t  which is  known as the  Magnus e f f e c t  

and then  t h e  i n t e r a c t i o n  of t h e  p a r t i c l e  and t h e  f l u i d  should be modified 

accordingly.  For p a r t i c l e s  of shape o t h e r  than  t h a t  of a sphere,  t h e  

r o t a t i o n  of t h e  body would in t roduce  a moment and thus  modify the  i n t e r -  

a c t i o n  of t h e  p a r t i c l e  and t h e  f l u i d  accordingly.  
10 
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( iv)  Surface roughness of t h e  p a r t i c l e .  The drag c o e f f i c i e n t  

given by Fig. 1 is  f o r  a sphere  of smooth sur face .  

t h e  sphere  i s  rough, t h e  drag c o e f f i c i e n t  may b e  d i f f e r e n t  from t h a t  

given by Fig. 1, p a r t i c u l a r l y  when t h e  s i z e  of t h e  p a r t i c l e  i s  no t  too  

s m a l l  and t h e  Reynolds number i s  near  i t s  c r i t i ca l  value.  Ordinar i ly ,  

t h i s  e f f e c t  i s  s m a l l  i n  two phase flow. 

I f  the  su r face  of 

(v) Rare f i ca t ion  effect. I f  t h e  diameter of t h e  sphere is  of t n e  

o rde r  of t h e  mean free pa th  of t h e  gas  i n  which t h e  sphere i s  moving, 

r a r e f i c a t i o n  e f f e c t  w i l l  no t  b e  neg l ig ib l e .  

flow condi t ion  f o r  the sphere.  

smaller than t h e  mean f r e e  pa th ,  w e  have f r e e  molecule flow f o r  t h e  

sphere.  

modified accordingly.  

A t  f i r s t ,  w e  may have slip 

I f  t h e  diamter  of t h e  sphere i s  much 

I f  w e  ope ra t e  i n  these  condi t ions ,  t h e  drag f o r c e  should b e  

' 14 

Even though t h e r e  are many u n c e r t a i n t i e s  about t he  drag co- 

e f f ic ien t  of t h e  sphere,  t h e  au tho r  be l i eves  t h a t  by proper choosing 

of t h e  s i z e  of t h e  sphere,  t h e  modified Stokes l a w  (3) should be  a b l e  

t o  r ep resen t  average drag f o r c e  of t h e  sphere  i n  t h e  development of t h e  

theory of t h e  dynamics of s o l i d - p a r t i c l e  gas system which has  been used 

by many authors2-' and which w i l l  be  used i n  t h i s  r e p o r t ,  

Another important  proper ty  of t h e  p a r t i c l e  which i s  e s s e n t i a l  

i n  t h e  development of t h e  theory of two phase flow of par t ic le-and gas 

is  t h e  hea t  t r a n s f e r  rate of t h e  p a r t i c l e s .  The s t a t u s  of our  knowledge 

f o r  t h e  h e a t  t r a n s f e r  of a sphere  is  j u s t  as unce r t a in  or  empir ica l  as 

t h a t  f o r  t h e  drag c o e f f i c i e n t ,  because t h e  h e a t  t r a n s f e r  rate depends 

on t h e  l o c a l  f low f i e l d  which i s  essent ia l  f o r  t h e  determinat ion of t he  

drag. S imi la r  t o  t h e  case of drag  c o e f f i c i e n t ,  w e  have only t h e o r e t i c a l  
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results for low Reynolds number or the Stokes regime only. The Nusselt 

number for a sphere is two when the diameter of the sphere is used as a 

typical length. For the second approximation, we may use the following 

formula : 

( 4 )  Nusselt No. = Nu - - 13- hd = 2 + L2p + --- e 

where h is the film coefficient of the sphere or the heat conducted 

per unit area per unit time into the sphere, 

sphere, 

Pe = Pr*Re is the Peclet number, Pr = cp~/# is the Prandtl number and 

R = Ud/v is the Reynolds number of the sphere. 

d is the diameter of the 

K is the coefficient of thermal conductivity of the fluid and 

e 

For high Reynolds number range, Eq. ( 4 )  may be modified by 

empirical forinula such' as 

where k,, k2 and k3 are constants determined by fitting the empirical 

data in the range of Keynolds number Re and Prandtl number Pr which 

are of interest. Those factors mentioned above which have influence 

on the drag coefficient would also have influence on the heat transfer 

rate too, 

small particle Reynolds number, 

It should be noticed that if we consider only the case of 

Nu = 2 should be of sufficient accuracy, 

For a first approximation, we may use an analogy similar to 

Reynolds analogy of ordinary fluid dynamics for the heat transfer and 

interaction force due to drag of the solid particles as follows: 

If we write the interaction force due to drag of particles as 

+ '  + +- 
F = (qg - qP) 
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t h e  hea t  t r a n s f e r  rate between t h e  two spec ie s  i n  tne mixture  i s  then 

where % ( z )  i s  a func t ion  of volume f r a c t i o n  z (see Eq, (3))and K 

i s  t h e  c o e f f i c i e n t  of thermal conduct iv i ty  of t h e  s o l i d  p a r t i c l e s  and 
P 

is  t h e  c o e f f i c i e n t  of v i s c o s i t y  of t h e  gas [see Eq. (37)l .  
? 3  

The drag f o r c e  of t h e  p a r t i c l e  determines the  s l i p  i n  v e l o c i t y  

between t h e  average v e l o c i t y  of t h e  s o l i d  p a r t i c l e s  and t h e  f l u i d  v e l o c i t y  

whi le  t h e  h e a t  t r a n s f e r  rate of t h e  p a r t i c l e  determines t h e  d i f f e rence  

of t h e  temperature  of t h e  s o l i d  p a r t i c l e s  and t h a t  of t h e  f l u i d .  By 

dimensional a n a l y s i s  and t h e  fundamental p r o p e r t i e s  of t h e  s o l i d  p a r t i c l e s  

and those  of t h e  f l u i d ,  we  may determine t h e  c h a r a c t e r i s t i c  t i m e s  and 

l eng ths  which show how long t h e  t i m e  and / o r  t h e  d i s t ance  t h a t  the  

v e l o c i t y  and t h e  temperature of t h e  p a r t i c l e s  w i l l  reach those correspond- 

ing  va lues  of t h e  f l u i d .  

t i m e s  and l eng ths  as follows: 

We are going t o  determine these  c h a r a c t e r i s t i c  

4 

( i )  Relaxat ion i n  ve loc i ty .  The p rope r t i e s  of t h e  s o l i d  p a r t i c l e s  

are tne average diameter  d of t h e  sphere,  t h e  average mass m o f  a 

s o l i d  p a r t i c l e  and t h e  s p e c i f i c  hea t  cs o f  t h e  p a r t i c l e .  The phys ica l  

p r o p e r t i e s  of t h e  f l u i d  o r  t h e  gas are t h e  c o e f f i c i e n t  of v i s c o s i t y  1 ~ .  of 

t h e  f l u i d ,  t h e  c o e f f i c i e n t  of thermal conduct iv i ty  K of t h e  f l u i d ,  t h e  

s p e c i f i c  h e a t  a t  cons tan t  pressure  of  t h e  f l u i d  c 

U of t h e  f l u i d ,  Now t h e  drag f o r c e  D of t h e  s o l i d  p a r t i c l e  should be 

of t h e  o rde r  of magnitude of i t s  i n e r t i a l  f o r c e  f o r  t h e  f i n a l  equilbrium 

condi t ion.  

and the  flow v e l o c i t y  
P 

By dimensional a n a l y s i s ,  w e  have 
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( 6 )  
2 

= mU /Lv D Q dyU Q inertial force Q mU/t 
V 

where tv is the characteristic time of velocity relaxation while L 

is the characteristic length of velocity relation. 

have 

V 

From Eq. ( 6 ) ,  we 

= constant e 
tV a (7) 

4 Marble 

37T 

us a formula to estimate the relaxation time and distance to reach the 

equilibrium of velocity between the particles and the fluid. 

suggested that the constant in Eq. (7) may take the value of 

- if we use the Stokes formula for the drag force. Equation (7) gives 

(ii) Relaxation in temperature. By dimensional analysis, the 

equilibrium of the heat transfer by conduction and the increase of 

temperature of the solid gives: 

Total amount of heat conducted Q area X film coefficient X time Q 

KdLT 
Q cs m Q d 2  * h e  tT%d - t  = -  2 K  

d T  U 

where tT is the characteristic time of temperature relaxation while 

LT 
we have 

is the characteristic length of temperature relaxation. From Eq. (8), 

c m  

dK ( 9 )  
S tT = (constant) e - = LT/U a 

4 Marble 

1/2 Tr if we use NU = 2 for the heat transfer rate. Equation (9) gives 

us a formula to estimate the relaxation time and distance to reach the 

equilibrium of temperature between the particles and the fluid. 

the heat conduction, the thermal radiation of the particles may not be 

suggested that the constant in Eq. (9) may take the value of 

Besides 

negligible in some cases- 
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3, 

from continuum theory po in t  of view. 

Fundamental equat ions  of t h e  mixture  of a gas  and s o l i d  p a r t i c l e s  

We cons ider  only t h e  case t h a t  t h e  p a r t i c l e s  may be  considered 

as a pseudo-fluid, The s o l i d  particles are spheres of i d e n t i c a l  m a s s  m 

r a d i u s  r and s p e c i f i c  h e a t  cs a W e  may consider t h e  mixture  as the  

mixture  of two f l u i d :  one of t h e  real  f l u i d ,  gas o r  l i q u i d  and t h e  o the r  

i s  t h e  pseudo-fluid of t h e  s o l i d  p a r t i c l e s .  For each spec ie s  r i n  t h e  

mixture ,  w e  would l i k e  t o  know i t s  v e l o c i t y  vec to r  q i ts  temperature 

Tr ,  i t s  p res su re  p and i t s  d e n s i t y  Fr . Since t h e r e  are some con- 

fus ions  about t h e  d e f i n i t i o n  of d e n s i t y  of t h e  s o l i d  and t h e  f l u i d ,  w e  

f i r s t  c l a r i f y  t h i s  po in t ,  as follows: 

P'  

P 

-+ 

r s  

r 

We cons ider  an element of t h e  mixture  of a f l u i d  f and 

s o l i d  p a r t i c l e s  p wi th  t o t a l  mass M = Mf + M and wi th  t o t a l  volume 

V = V f f V  where t h e  s u b s c r i p t  f r e f e r s  t o  t h e  va lue  of t h e  f l u i d ,  

gas o r  l i q u i d ,  and t h e  s u b s c r i p t  p r e f e r s  t o  t h a t  of s o l i d  particles.  

P 

P 

It is  convenient t o  in t roduce  t h e  number d e n s i t y  of t h e  s o l i d  particles 

n 

i n  t h e  flow f i e l d .  

which i s  t h e  number of s o l i d  p a r t i c l e s  per  u n i t  volume a t  a po in t  

The volume occupied by t h e  s o l i d  p a r t i c l e s  
P 

i s  then 
vP 

- 
V = n  v V e ~  

P P  P 

- 4  where r = - m r3 is  the  volume of a s o l i d  p a r t i c l e  i n  t h e  mixture. 

The mass of t h e  s o l i d  p a r t i c l e s  i n  t h e  volume 
P 3  P 

V is  

H = m n V  
P P P  

The speci .es  dens i ty  of t h e  s o l i d  p a r t i c l e s  is  defined as 

Hence t h e  s p e c i e s  

given problem. 

d e n s i t y  of t h e  s o l i d  p a r t i c l e s  i s  a cons tan t  f o r  a 
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In the analysis of the two-fluid theory, we should use the 

partial density of each species, 

of ‘solid particles is defined as 

The partial density of the pseudo-fluid 

where Z represents the fraction of volume of solid particles in the 

mixture which is one of the 

phase flow of gas and solid 

V 

important variables in the treatment of two 

particles. From Eq. (13), we have 

In many analysis of two phase flow, we consider the case where Z is 

very small in comparison with unity so that some simplification may be 

obtained (see SV). However, we shall first derive the fundamental 

equations for finite value of Z. The partial density of the pseudo-fluid 

of solid particles 

analysis and it is proportional to Z or n e 

- 
is one of the fundamental Variables in our 

pP 

P 
Similarly, we have also the species density of the gas and 

the partial density of 

fluid is defined as 

the gas too. The species density of the gas or 

and the partial density of the gas or fluid is defined as 

Only when the volume fraction of the particles 

in comparison to unity, the partial density of the gas is approximately 

equal to the species density. The,distinction between these two densities 

is very important in the analysis of two phase flow for finite values of 

Z is negigibly small 

Z. 



21 
Now w e  are going t o  d iscuss  t h e  fundamental equat ions f o r  t n e  

mixture  of a gas  and a pseudo-fluid of s o l i d  p a r t i c l e s  based on t h e  two 

These equat ions  are as follows: f l u i d  theory 15,16 

(i) Equations of state. 

For each spec ie s  i n  the  mixture  of gas and pseudo-fluid of 

s o l i d  p a r t i c l e s ,  we have one equat ion of state. 

t h e  p e r f e c t  gas l a w ,  w e  have 

For t h e  gas ,  w e  may use 

is  t h e  p a r t i a l  p ressure  of t h e  gas i n  the  mixture  and T 
pg g 

where 

i s  t h e  p a r t i a l  temperature of t h e  gas  and R i s  the  gas cons tan t ,  The 

t o t a l  p re s su re  of t h e  mixture  i s  p which i s  obtained from t h e  pe r fec t  

gas  l a w  as fol lows:  

p = R p  T 
g g  

Since the t o t a l  p re s su re  of t h e  mixture  is the  sum of t h e  par t ia l  

p re s su re  of t h e  gas  

of s o l i d  p a r t i c l e s  

and (18), w e  f i n d  t h a t  t h e  p a r t i a l  p ressure  of t h e  s o l i d  p a r t i c l e s  must be 

and t h e  p a r t i a l  p re s su re  of t h e  pseudo-fluid 

we have 
pg 

pP p = pg + pp . With t h e  h e l p  of E q s .  (17) 

P p = Z P  ( 1 9 )  

of t h e  s o l i d  
pP 

I f  

p a r t i c l e s  may b e  n e g l i g i b l e  as has  been assumed i n  many l i t e r a t u r e .  

However, f o r  f i n i t e  va lue  of Z ,  Eq. (19) should be  usedr  Thus w e  show 

t h a t  Murray's assumption t h a t  p i s  n e g l i g i b l e  f o r  f i n i t e  Z is  no t  

c o r r e c t  

Z << 1, w e  may assume t h a t  t h e  p a r t i a l  p ressure  

P 
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The equat ion  of s ta te  f o r  t h e  pseudo-fluid of s o l i d  p a r t i c l e  

i s  simply 

Thus i n  t h e  two f l u i d  theory of t h e  mixture  of gas and s o l i d  p a r t i c l e s  

w e  may cons ider  one v a r i a b l e  less than  t h e  theory of t h e  mixture  of two 

compressible f l u i d s ,  as w e  s h a l l  show later. 

( i i )  Equations of con t inu i ty ,  

For each spec ie s  i n  t h e  mixture,  w e  have one equat ion of 

15 c o n t i n u i t y  which g ives  the  conservat ion of mass of t h a t  species. 

For t h e  pseudo-fluid of t he  s o l i d  p a r t i c l e s ,  w e  have t h e  equat ion of 

con t inu i ty :  

(3 
a i a ZPS 

a t  P 
2 4- --y ( Z  Psp up) = - 

ax 

i 
P 

where u is  t h e  i t h  component of t h e  v e l o c i t y  of t h e  pseudo-fluid 

of t h e  s o l i d  p a r t i c l e  q and (3 i s  t h e  source func t ion  of t h e  p a r t i c l e s  

and t h e  summation convention i s  used i n  Eq. (21) .  

(3 

(3 = b F p  = b Z pSp where b is  a cons tan t .  

-+ 

P P 
Ord ina r i ly ,  w e  may take 

= 0 whi le  i n  some problems such as luna r  a sh  flow17, w e  may take  
P 

P 

For t h e  gas ,  w e  have t h e  equat ion  of con t inu i ty :  

-+ i 
g 

where u is  t h e  i t h  component of t h e  v e l o c i t y  of t h e  gas qg and Pg 

i s  t h e  spec ie s  dens i ty  of t h e  gas ,  which is  governed by Eq. (18), 

Adding Eqs, (21) and (22), w e  have t h e  equat ion of con t inu i ty  

of t h e  mixture:  



where p is the density of the mixture, ioea9 

i and u 

q which is defined as 

is the ith component of the flow velocity vector of the mixture 
3 

(iii) Equations of motion. 

For each species, the conservation of momentum gives the 

corresponding equations of motion. 

For the pseudo-fluid of solid particles, we have the equations 

of motion as follows: 
4. 

D S  +- - a = - Vp + V e - r  9- 3 + F -0 (26) - i a  -+ 

P 'sp Dt P P bP P P P  -1 q 

and for the gas, the equations of motion are: 

where the partial pressures of the pseudo-fluid of solid particles and that 

of the gas are respectively 

stresses tensors of the solid particles and gas are T and 'r Even 

though the study of the viscous stresses of the pseudo-fluid of the solid 

and p while the corresponding viscous 
pP g 

P i3 
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p a r t i c l e s  i s  s t i l l  meager, f o r  a f i r s t  approximation from the  continuum 

theory po in t  of view, w e  may take  similar expression f o r  both the  pseudo- 

f l u i d  of s o l i d  p a r t i c l e s  and t h a t  of the  gas with the  Navier-Stokes 

re1at ions4s5 as fol lows 

aui a U  j (+) a U  k sij 
r i j  = l J r  (3 r + 7' + l J r l  

'r ax ax ax 

where S i j = 0 ,  i f i +  j , Si' = 1 , i f  i = j , subsc r ip t  r 

r e f e r s  t o  t h e  va lues  of r t h  spec ie s ,  t he  summation convention does not  

apply t o  the  ind ices  of t h e  spec ie s  r b u t  only t o  t h e  t e n s o r i a l  i nd ices  

while  'r i , j o r  k . The c o e f f i c i e n t  of v i s c o s i t y  of r t h  spec ies  i s  

the  second o r  bulk c o e f f i c i e n t  of v i s c o s i t y  of r t h  species is  

r e s t r i c t i o n s  on t h e  va lues  of 1-1 and pr1 are vr = > 0 and 

21-1, + 3pr1 2 0 f o r  a f i r s t  

approximation. I f  Z i s  not  neg l ig ib ly  s m a l l ,  w e  may not  neglec t  the  

The 'r1 e 

r 

Ordinar i ly ,  w e  may take  2pr + 3vr1 = 0 

p a r t i a l  p ressure  of t h e  pseudo-fluid of s o l i d  p a r t i c l e s .  The assumptions 

used by Murray i n  re ference  5 t h a t  p = p and pp = 0 f o r  a r b i t r a r y  

va lue  of Z are wrong. They are t r u e  only when Z -+ 0 , I n  genera l ,  

w e  should use  t h e  r e l a t i o n s  (17) and (19) f o r  p and p i n  terms of Z 

and t h e  t o t a l  p ressure  of t he  mixture.  

g 

g P 

-+ 
The body fo rces  of t h e  spec ie s  are F and 8 which con- 

bP bg 

sists of t h e  g r a v i t a t i o n a l  fo rces  and t h e  electromagnet ic  fo rces  and o ther  

body fo rces ,  For in s t ance ,  f o r  t h e  g r a v i t a t i o n a l  fo rces ,  w e  have 
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-b 

where g i s  t h e  g r a v i t a t i o n a l  a c c e l e r a t i o n  vec tor .  I f  t h e  body fo rces  

are t h e  electromagnet ic  f o r c e s ,  w e  have t o  consider  t he  electromagnet ic  

f i e l d  s imultaneously wi th  those  fundamental equat ions discussed i n  t h i s  

r epor t .  

r e p o r t  

We are no t  going t o  cons ider  t h e  electromagnet ic  fo rces  i n  t h i s  

The most d ; l f f i cu l t  fo rces  i n  t h e  presenf  ana lys i s  are the  

i n t e r a c t i o n  fo rces  between t h e  f l u i d  o r  gas and t h e  pseudo-fluid of s o l i d  

p a r t i c l e s  which are shown i n  Eqs. (26) and (27) as F and F . A s  w e  

have b r i e f l y  d iscussed  i n  s e c t i o n  2 ,  t h e  i n t e r a c t i o n  fo rces  c o n s i s t  of 

many terms such as t h e  drag fo rces  of t h e  p a r t i c l e s ,  t he  bouyancy f o r c e  

of t h e  s o l i d  p a r t i c l e s ,  t h e  a c c e l e r a t i o n  f o r c e s ,  etc.  I n  many t h e o r e t i c a l  

ana lyses ,  only t h e  simple drag f o r c e  due t o  v iscous  stress i s  considered. 

For f i r s t  approximation, w e  may use  t h e  simple formula: 

-+ -% 

P g 

-% -+ -b 
F = n 6 1 ~ r  LI (q - qp) 

P P P g g  

where w e  assume t h a t  t h e  s o l i d  p a r t i c l e s  are spheres  of same rad ius  r 
P 

and t h e  i n t e r a c t i o n  between p a r t i c l e s  are n e g l i g i b l e  and Stokes formula 

i s  used f o r  t h e  v iscous  stress. Of course,  Eq. (30) i s  good only when the  

volume f r a c t i o n  of t h e  s o l i d  p a r t i c l e  is s m a l l ,  s a y  Z < 0.1. For l a r g e r  

va lue  of Z 

o r  o t h e r  formulas. B 

some modi f ica t ion  of Eq. (30) should be  used'' such as Eq. (3 )  

By Newton's t h i r d  l a w  of motion, w e  have always 

-% +- 
F = - F  

€4 P 

I f  w e  cons ider  t h e  g r a v i t a t i o n a l  f o r c e  as a body f o r c e ,  w e  should 

a l s o  inc lude  t h e  bouyancy f o r c e  as a p a r t  of t h e  i n t e r a c t i o n  force .  

t h i s  case, w e  should add t h e  bouyancy f o r c e  t o  t h e  viscous drag fo rce  of 

Eq. (30) and t h e  bouyancy f o r c e  i s  simply 

I n  
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4. 

It i s  i n t e r e s t i n g  t o  n o t i c e  t h a t  i f  w e  combine t h e  bouyancy f o r c e  wi th  

t h e  corresponding body f o r c e  due t o  g r a v i t a t i o n a l  a c c e l e r a t i o n ,  w e  have 

f o r  t h e  pseudo-fluid, t h e  f o r c e  due t o  g r a v i t a t i o r d  a c c e l e r a t i o n  

where f o r  t h e  gas (Eq. (27)), w e  have t h e  f o r c e  due t o  g r a v i t a t i o n a l  

a c c e l e r a t i o n :  

where Eqs. ( 3 3 )  and ( 3 4 )  were used i n  r e fe rences  5 and 6 without  i n d i c a t i o n  

of t h e  o r i g i n s  of t h e s e  fo rces .  Even though those  o the r  e f f e c t s  of i n t e r -  

a c t i o n  f o r c e s  such as due t o  a c c e l e r a t i o n ,  r o t a t i o n  e t c .  have been d is -  

cussed i n  l i t e r a t u r e ,  they have no t  been included i n  any success fu l  

t rea tment  of t h e o r e t i c a l  a n a l y s i s  of t h e  flow problems of p a r t i c l e - f l u i d  

system. W e  do not  expect t h a t  they w i l l  be  success fu l ly  included i n  any 

flow problems a n a l y s i s  i n  t h e  nea r  f u t u r e  and hence w e  s h a l l  not d i scuss  

them f u r t h e r  . 
The term 0' Z is  t h e  f o r c e  a s soc ia t ed  wi th  the  momentum due 

P P  
t o  t h e  source  term 0' a 

P 
I f  w e  add Eqs. (26) and (27) and use  t h e  d e f i n i t i o n s  of t h e  

dens i ty  and t h e  flow v e l o c i t y  of t h e  mixture  ( 2 4 )  and (25), w e  may ob ta in  

an equat ion  of motion f o r  t h e  mixture  as a whole. 

f i n i t i o n  of t h e  c o e f f i c i e n t  of v i s c o s i t y  o r  viscous stress t enso r  of the 

mixture  inc luding  t h e  d i f f u s i o n  terms, w e  may formally ob ta in  the equation 

I f  w e  use proper de- 
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of motion of t h e  mixture  i n  exac t ly  t h e  same form a s  ordinary Navier- 

Stokes e q ~ a t i 0 n . l ~  

of v i scous  stress and p res su re ,  such an equat ion  i s  not very use fu l  i n  

t h e  a n a l y s i s  of flow problem when t h e  d i f f u s i o n  terms i s  no t  neg l ig ib ly  

s m a l l .  Hence, w e  s h a l l  no t  w r i t e  t h i s  equat ion of motion of t he  mixture 

here .  But i n  some l i m i t i n g  cases, such an equat ion  of motion of t h e  

mixture  may b e  u s e f u l  and w e  w i l l  d i s cuss  them i n  s e c t i o n  V.  

15 may b e  r e f e r r e d  t o  f o r  t h e  equat ion  of motion of t h e  mixture  i n  a 

multi-f l u i d  theory. 

Because of t h e  terms of d i f f u s i o n  i n  the  d e f i n i t i o n  

Reference 

( i v )  Equations of energy. 

For each s p e c i e s ,  t he  conserva t ion  of energy g ives  the  corres- 

ponding equat ion  of energy. 

For t h e  pseudo-fluid of s o l i d  p a r t i c l e s ,  w e  have t h e  equation 

of energy as fo l lows:  

2 
a j 2 i i j  ‘ump + 4 qp + 0,) - u .-c + - [ Z  PSP up + 

a [z  Ps ‘Urn + 4 q + 0 11 
P P  axJ a t  

j = KT(Tg - T ) + & 
+ $j i 

up pp - Qcpl P P 

and f o r  t h e  gas ,  t h e  equat ion  of energy i s  

2 
a[(l-z> P cum + 4 q + 0 11 a j 2 i i j  + - [ ( l - Z ) p  u (u +4qg+Og) - u IC + 

g g  mg g g  aXJ  
a t  

(35) 

i j  i s  

Qcr i s  

i s  t h e  p o t e n t i a l  energy 

where Umr 

t h e  i j t h  component of t h e  v iscous  stress t enso r  of t h e  r t h  spec ie s ;  

t h e  h e a t  conducting f l u x  of t h e  r t h  spec ie s  and 

i s  t h e  i n t e r n a l  energy p e r  u n i t  mass cf t he  r t h  spec ie s ,  T r 

j 

4, 
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is the magnitude of the velocity vector of the of the rth species, 

rth species; E is the energy source due to chemical reaction and/or 

electromagnetic forces and other heat addition terms of the rth species. 

We shall discuss the significance of some of these terms in the next 

section from the simple kinetic theory point of view. 

are of the same nature as ordinary fluid. 

coefficient between the solid particles and the gas. 

the expression of KT 
ticles and various parameters is still very meager. It is more compli- 

cated than the expression of interaction forces. In our approximation 

with Stokes law for the interaction force between solid particles and 

the gas, we may take 

qr 

r 

In general, they 

IC is the thermal friction T 
Our knowledge for 

in terms of physical properties of the solid par- 

where K is the coefficient of thermal conductivity of the solid 

particles. 
P 

Similarly, we may add the two energy equations (35) and ( 3 6 )  to 

get an energy equation for the mixture of the gas and solid particles. 

This energy equation may be reduced to the same form as that of ordinary 

gasdynamics if we use complicated definition of viscous dissipation and 

heat conduction flux by including those complicated terms due to diffusion 

Since such an equation is not very useful in the treatment of problems, 

we shall not write it here. 

equation of the mixture as a whole in the multi-fluid theory. 

Since the density of the solid particles 

15 . 

Reference 15 may be referred to for the energy 

is considered as 
pSP 

and T + -t 

g 
a constant, we have eleven variables: qp qg , p Z pg Tp 
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i n  our s tudy  of t h e  flow problem of a mixture  of a gas and a pseudo-fluid 

of s o l i d  p a r t i c l e s  which are governed by t h e  eleven equations: (18),  (21), 

(221 ,  W ) ,  (271,  (35) and (36) ,  

4 .  

from t h e  simple k i n e t i c  theory p o i n t  of v i e w .  

Fundamental equat ions  of t h e  mixture  of a gas and s o l i d  p a r t i c l e s  

S imi l a r  t o  t h e  case of ord inary  gasdynamics, t h e  k i n e t i c  theory 

of two phase flow of s o l i d  pa r t i e l e s -gas  system would g ive  much more in- 

formation than  t h e  continuum theory could and on t h e  o t h e r  hand because 

of many phys ica l  and mathematical d i f f i c u l t i e s ,  i t  is not p o s s i b l e  a t  

t h e  p r e s e n t  t i m e  t o  use  t h e  k i n e t i c  theory t o  treat  any p r a c t i c a l  flow 

problem. 

serves two important  a spec t s  i n  t h e  study of gasdynamics. I n  the  f i r s t  

p l a c e ,  t he  fundamental equations f o r  t h e  macroscopic d e s c r i p t i o n  may be 

der ived  from t h e  Boltzmann equat ions  as a f i r s t  approximation. Thus w e  

may have some guides about t h e  v a l i d i t y  of t h e  fundamental equations of 

t h e  continuum theory from t h e  a n a l y s i s  of Boltzmann equation. 

However, t h e  Boltzmann equat ion  of t h e  k i n e t i c  theory of gases 

In t he  

second p lace ,  t h e  Boltzmann equat ion  may g i v e  us va luable  information on 

t h e  t r a n s p o r t  c o e f f i c i e n t s ,  such as t h e  c o e f f i c i e n t s  of v i s c o s i t y ,  h e a t  

conduc t iv i ty ,  etc. In t h e  macroscopic a n a l y s i s ,  t hese  t r a n s p o r t  coe f f i -  

c i e n t s  are simply introduced as known func t ions  of s ta te  v a r i a b l e s  of t h e  

gas. 

would serve i n  a s imilar  manner i n ' t h e  dynamics of t h e  pa r t i c l e -gas  system. 

We would expect t h a t  t h e  Boltzmann equat ions  of t he  two phase flow 

Since  t h e  k i n e t i c  theory of pa r t i c l e -gas  system i s  more com- 

p l i c a t e d  than  t h a t  of gas a lone ,  a l l  t h e  r e s t r i c t i o n s  and d i f f i c u l t i e s  

i n  t h e  development of k i n e t i c  theory of gases remain i n  t h a t  f o r  t h e  

pa r t i c l e -gas  system. 

i n  t h e  k i n e t i c  theory of pa r t i c l e -gas  system. 

Furthermore, w e  have t o  make a d d i t i o n a l  approximations 

The a d d i t i o n a l  complications 
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i n  t h e  k i n e t i c  theory of pa r t i c l e -gas  system are 

p a r t i c l e s ,  ( i i )  t h e  phys ica l  p r o p e r t i e s  of t h e  s o l i d  p a r t i c l e s ,  and ( i i i )  t h e  

c o l l i s i o n  process of t h e  s o l i d  p a r t i c l e s  and t h e  c o l l i s i o n  process of t he  

s o l i d  p a r t i c l e s  w i th  t h e  gas,  Hence t h e  k i n e t i c  theory of t h e  pa r t i c l e -gas  

system is  s t i l l  i n  an  undeveloped s t a g e  and only a few prel iminary a t t e m p t s  

have been made. 

pre l iminary  a t  t emp t s 4 3 2 0  i n  order  t o  g e t  some i n s i g h t  of c e r t a i n  terms i n  

t h e  fundamental equat ion  of t h e  pa r t i c l e -gas  system discussed i n  l a s t  sec t ion .  

( i )  s i z e  d i s t r i b u t i o n  of t h e  

Thus, i n  t h i s  s e c t i o n ,  w e  can only g ive  some sketch of t hese  

I n  t h e  same s p i r i t  of k i n e t i c  theory of gas,  t h e  k i n e t i c  theory of 

pa r t i c l e -gas  system h a s  been t r e a t e d  on t h e  b a s i s  of Boltzmann equation of 

s i n g l e  p a r t i c l e  d i s t r i b u t i o n  func t ion .  

func t ion  of t h e  gas F and a d i s t r i b u t i o n  func t ion  of t h e  p a r t i c l e s  F 

and each of t hese  d i s t r i b u t i o n  func t ions  i s  governed by a Boltzmann equation. 

W e  may de f ine  a molecular d i s t r i b u t i o n  

g P 

The d i s t r i b u t i o n  func t ion  of t h e  gas 

i n  the  same manner as t h a t  i n  ord inary  k i n e t i c  

Boltzmann equat ion  f o r  F should con ta in  t h e  

by t h e  s o l i d  p a r t i c l e s  and t h e  c o l l i s i o n  terms 
g 

molecules F may be  defined i n  
g 

theory of gases16 bu t  t h e  

body f o r c e  on the  molecules 

should con ta in  t h e  c o l l i s i o n  

between t h e  gas molecules and t h e  s o l i d  p a r t i c l e s .  

express ion  f o r  t h e s e  two a d d i t i o n a l  terms i s  s t i l l  not a v a i l a b l e  a t  t h e  

p re sen t  t i m e .  

A complete t h e o r e t i c a l  

The d i s t r i b u t i o n  func t ion  f o r  t h e  s o l i d  p a r t i c l e s  F i s  d i f f e r e n t  
P 

from t h a t  of t h e  gas molecules because w e  have t o  take  the  d i f f e r e n t  s i z e ,  

shape and phys ica l  p r o p e r t i e s  of t h e  s o l i d  p a r t i c l e s  i n t o  account. 

suggested by Marble 

are sphe res ,  w e  may d e f i n e  t h e  d i s t r i b u t i o n  func t ion  of t h e  s o l i d  p a r t i c l e s  

F as follows: 

A s  

4 i f  w e  cons ider  only t h e  case  t h a t  a l l  t h e  p a r t i c l e s  

P 
The number of s o l i d  p a r t i c l e s  dn wi th  r ad ius  between r and P P 

and x.+dx i i  having the  p a r t i c l e  instantaneous xi r +dr i n  a volume 
P P  
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v e l o c i t y  c i n  t h e  range c and c.+dci and t h e  instantaneous temperature 

of t h e  s o l i d  p a r t i c l e s  i n  the  range 0 and 0 + de i s  
i i 1 

3 F ~ ( x ~  ;C 0 , r t )  d xi d c.  de d r  = dn ' d xi 3 3  
3 P J P P 

3 where x is  t h e  i t h  s p a t i a l  coord ina te  of t h e  po in t  considered and d xi 

is  t h e  elementary volume a t  t h e  p o i n t  considered; 

of t h e i n s t a n t a n e o l s  v e l o c i t y  of a p a r t i c l e  i n  t h e  d i r e c t i o n  of 

d c i s  t h e  volume i n  t h e  v e l o c i t y  space; 0 i s  t h e  iagtaneaneous temperature 

of t h e  p a r t i c l e  which may be  v a r i e d  from p a r t i c l e  t o  p a r t i c l e  and 

t h e  r a d i u s  of a p a r t i c l e  which may be  d i f f e r e n t  f o r  d i f f e r e n t  p a r t i c l e s  

i n  t h e  mixture. 

i 

i s  t h e  j t h  component 

xi 

cj 

and 
3 

j 

r i s  
P 

The d i s t r i b u t i o n  func t ion  of t h e  gas  molecules F may be defined 

i n  a s i m i l a r  manner as F bu t  F i s  d i f f e r e n t  from F i n  two r e spec t s :  

( i )  t h e  r a d i i  of a l l  molecules of a given gas are t h e  same and hence w e  do 

no t  have t h e  v a r i a t i o n  of t h e  d i s t r i b u t i o n  func t ion  wi th  t h e  s i z e  OS t h e  

p a r t i c l e s  r and ( i i )  t h e  temperature 0 of t h e  p a r t i c l e  should be 

rep laced  by t h e  i n t e r n a l  energy of t h e  molecule . I n  the  case of s i m p l e  

k i n e t i c  theory of monatomic gas ,  w e  may drop t h e  v a r i a t i o n  of t h e  d i s t r i -  

b u t i o n  func t ion  wi th  t h e  temperature  0 i n  t h e  d i s t r i b u t i o n  func t ion  F . 
I n  gene ra l ,  our d i scuss ion  on F may be  app l i ed  t o  F wi th  a l i t t l e  

mod i f i ca t ion .  Thus w e  s h a l l  cons ider  only F from now on. 

g 

P t3 P 

P 
16 

g 

P g 

P 
The v a r i a t i o n  of t h e  d i s t r i b u t i o n  func t ion  F wi th  t h e  r ad ius  

P 
r , i .e . ,  t h e  s i z e  d i s t r i b u t i o n  of t h e  s o l i d  p a r t i c l e s ,  i s  d i f f e r e n t  f o r  

d i f f e r e n t  p r a c t i c a l  cases and w e  should assume t h a t  t h i s  v a r i a t i o n  i s  given 

i n  t h e  development of t h e  k i n e t i c  theory of t h e  pa r t i c l e -gas  system. The 

s imples t  approximation about t h e  s i z e  d i s t r i b u t i o n  i s  t h a t  w e  r ep lace  the 

s i z e  d i s t r i b u t i o n  by an average s i z e  r and then the  v a r i a t i o n  of F w i t h  

P 

- 
P P 
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r 

consider. The second approximation for the size distribution is that we 

divide the particles into two groups and in each group, we use an average 

may be omitted in our analysis. This is the case which we are going to P 

- , i = 1 or 2 e In this manner, we may consider the solid 
- - Pi 

radius r 

particles as a mixture of two kinds of spheres with radii r and r 

respectively for each group, We define a distribution function F . The 
PI P2 

Pi - 
distribution function so defined is independent of r explicitly. This 

approach has been used in reference 20 in which some interesting results 

about the interaction of particles of different sizes were obtained. Of 

course, for more accurate approximation, we may divide the size of the 

particles into 

Pi 

N groups and for each group we use an average radius 
- 
r , i = 1, 2 ,  --- N . In such an analysis we have to use N-distribution 

functions for the particles, i.e., one each group r e Since such an 
- Pi 

Pi 
analysis may be formally extended from our analysis of one uniform size 

particle in a straightforward manner16 just as in the case to extend the 

kinetic theory of a siqgle gas to a mixture of gases. 

sider this case Of 

We shall not con- 

N-groups any more ~ 

P 
The distribution function F is governed by the Boltzmann 

equation which shows that the total rate of change of 

be equal to &change of number of the particles per unit volume in the range 

of variables considered, i.e., 

F with time must 
P 

where $j 

r and a mass m$r) which is a function of r in general; Q, is the 

is the jth component of the force on a solid particle of radius 

P P 
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hea t  t r a n s f e r  rate from a p a r t i c l e  of r ad ius  r and cs i s  t h e  

s p e c i f i c  h e a t  crf a p a r t i c l e ,  M (t 1 
P 

of t h e  number of t h e  p a r t i c l e s  pe r  u n i t  volume p e r  u n i t  t i m e  i n  t h e  

P 
i s  t h e  Qncrease 

v e l o c i t y  range c and c + dc and temperature range 9 and 9 + de and 
j j j 

r a d i u s  range r and r + d r  due t o  t h e  c o l l i s i o n  e f f e c t s  and M (-1 
P P P P 

i s  t h e  corresponding decrease  of t h e  number of t h e  particles i n  t h e  

range of t h e  v a r i a b l e s  considered due t o  t h e  c o l l i s i o n  e f f e c t s .  

exact express ions  f o r  M") and M 

of t h e  motion and h e a t  t r a n s f e r  of t h e  s o l i d  particles. 

The 

depend on t h e  k i n e t i c  p i c t u r e s  
P P 

I n  genera l ,  

w e  have t o  make va r ious  assumptions about t h e  motion and t h e  hea t  t rans-  

f e r  of t h e  p a r t i c l e s  be fo re  w e  may w r i t e  down t h e  expressions f o r  ivI (+> 
P 

(-1 and M 
P 

L e t  us d i s c u s s  a few fundamental d i f f i c u l t i e s  i n  t h e  develop- 

ment of a s u c c e s s f u l  k i n e t i c  theory of pa r t i c l e -gas  system as follows: 

( i )  The f o r c e  Cp on t h e  p a r t i c l e s  are complicated func t ions  of many 
j 

gasdynamic parameters as w e  have d iscussed  i n  s e c t i o n s  2. The f o r c e  Cp 

should be  a func t ion  of t h e  ins tan taneous  v e l o c i t y  of t h e  p a r t i c l e s  and 
j 

t h e  unsteady e f f e c t  of t h e  flow f i e l d  may be important. 

t i m e ,  on ly  t h e  Stokes l a w  of f o r c e  f o r  s teady  unl imited flow f i e l d  has 

been used. 4 9 2 0  

A t  t he  present  

Hence w e  are s t i l l  i n  t h e  pre l iminary  s t a g e  of simple k i n e t i c  

theory of pa r t i c l e -gas  system, 

( i i )  S imi l a r ly ,  t h e  h e a t  t r a n s f e r  rate Qh of t h e  par t ic les  i s  very 

complicated as d iscussed  i n  s e c t i o n  2 and only t h e  h e a t  t r a n s f e r  rate cor- 

responding t o  t h e  Stokes flow reg ion  has been used. 

c o n s i s t  of t h e  c o l l i s i o n s  

between p a r t i c l e s  and t h e  c o l l i s i o n s  between p a r t i c l e s  and gas molecules. 

The mechanism of t h e s e  c o l l i s i o n s  are very  complicated, p a r t i c u l a r l y  when 

P 
( i i i )  The c o l l i s i o n  terms M and M 

P 

t h e  s i z e  of t h e  p a r t i c l e s  v a r i e s .  A p a r t  of t h e  c o l l i s i o n  between the  
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p a r t i c l e s  and t h e  gas  molecules i s  taken i n t o  account by t h e  body f o r c e  

e Since t h e  body f o r c e  4 i s  expressed i n  terms of t h e  mean flow ' j j 
v e l o c i t y  of t h e  gas around t h e  p a r t i c l e ,  t h e r e  are s t i l l  remaining c o l l i s i o n  

e f f e c t s  between p a r t i c l e s  and gas  molecules due t o  pecu l i a r  v e l o c i t y  of t h e  

gas  molecules.  I n  r e fe rence  4 ,  c o l l i s i o n  terms are completely neglected.  

I n  r e fe rence  20, t h e  c o l l i s i o n  between p a r t i c l e s  and gas molecules are 

neglec ted  except  t h a t  p a r t  due t o  t h e  mean f low which i s  expressed i n  the  

body f o r c e  term 

long range c o l l i s i o n s  between two groups of p a r t i c l e s  were considered. 

according t o  Stokes l a w .  I n  re ference  20, only t h e  ' j 
From t h e  Boltzmann equat ion  ( 3 9 ) ,  w e  may formally de r ive  t h e  

va r ious  t r a n s f e r  equat ions  f o r  t h e  p a r t i c l e s  (pseudo-fluid) which are t h e  

fundamental equat ions  of pa r t i c l e -gas  system f o r  macroscopic t reatment .  

Before w e  de r ive  these  t r a n s f e r  equat ions ,  w e  have t o  l i s t  t h e  formulas 

which show t h e  macroscopic v a r i a b l e s  i n  terms of d i s t r i b u t i o n  func t ion  F . 
P 

(i) 

The number d e n s i t y  n i s  

Density and number d e n s i t y  of t h e  pseudo-fluid of s o l i d  p a r t i c l e s :  

P 

I f  t h e  p a r t i c l e s  are of t h e  same rad ius ,  w e  may consider  t h a t  t he  dependence 

of F wi th  r is  a d e l t a  func t ion  and t h e  i n t e g r a t i o n  wi th  r e spec t  t o  

r i s  uni ty .  Hence t h e  i n t e g r a t i o n  wi th  r e spec t  t o  r may be  omitted.  

We have simply 

P P 

P P 

S imi l a r ly ,  i f  t h e  temperatures of a l l  t h e  p a r t i c l e s  are t h e  same, w e  may 

cons ider  t h a t  t h e  dependence of F ' with  0 i s  a d e l t a  func t ion  and t h e  P 



35 

i n t e g r a t i o n  wi th  r e spec t  t o  8 i s  u n i t y ,  and may be  omitted.  Hence f o r  

t h e  case of cons tan t  r ad ius  p a r t i c l e s  wi th  same temperature,  Eq.  (40) is  

reduced t o  t h e  usua l  d e f i n i t i o n  of ord inary  k i n e t i c  theory of gas ,  i .e . ,  

The same concept of i n t e g r a t i o n  i s  app l i cab le  t o  a l l  t he  i n t e g r a t i o n  i n  

t h i s  s ec t ion .  

The m a s s  dens i ty  o r  simply dens i ty  of t h e  pseudo-fluid of s o l i d  

p a r t i c l e s  i s  

- -  
(41) 

3 - = 1 1 1 m p ( r p >  F(xi cj  ., 8 rp t) d c .  de d r  = m (r ) np 
pP J P P P  

- 
where p is the  p a r t i a l  densf ty  of t h e  pseudo-fluid of s o l i d  p a r t i c l e s  

and m i s  t h e  mean m a s s  of a p a r t i c l e  i n  t h e  f l u i d  and r i s  t h e  mean 

r a d i u s  of a p a r t i c l e  i n  t h e  pseudo-fluid. 

termine t h e  mean mass m and mean r ad ius  r of t h e  p a r t i c l e s  i f  w e  
P P 

r e p l a c e  the  a c t u a l  p a r t i c l e s  by t h e  same number of p a r t i c l e s  of s a w  s i z e  

- P 

P P 
Equation (41) may be used t o  de- 

- - 

--? 

r .  
P 

(ii) Flow v e l o c i t y  of t h e  pseudo-fluid of s o l i d  p a r t i c l e s  u i s  
P i  

(iii) The temperature of t h e  pseudo-fluid of s o l i d  par t ic les  T i s  
P 

3 1 1  mp(rp) 8 F p j  d c de d r  P 
(43  1 
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It should be noticed that the temperature of the pseudo-fluid of particles 

is not the kinetic temperature of the particles, 

similar to those temperatures of internal energy other than the kinetic 

energy of random motion of the particles. 

the expression of ( 4 3 )  for the temperature but the ordinary kinetic tem- 

perature of the gas. 

This is the temperature 

For the gas, we should not use 

16, 15 

(iv) The interaction force exerted upon the particles by the gas in 

a unit volume of gas-particle mixture is 

The difference of notations between the distribution function F and the 

ith component of the total force acting on the particles by the gas 

should be noticed, For a given expression of $ , we may calculate the 
interaction force. In the simplest case, we may have the Stokes formula 

P 
F 
Pi 

i 

(30) * 

(v) The work done on the gas by the entire particulate clouds in the 

elementary volume is 

This is the work done due to random body force in the random motion of t n e  

particles. 

(vi) The total heat transfer rate to the gas by the particle cloud 

within the elementary volume is 

There is no similar term of Q in the ordinary kinetic theory of gas. 
P 
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(vii) The stress tensor of the pseudo-fluid of solid particles is 

) (ci - u ) (cj - u ) Fp d3c de dr . ( 4 7 )  'ij Pi pj j P 

This stress tensor corresponds to the pressure tensor of ordinary 

kinetic theory of gases which consists of the partial pressure 

the pseudo-fluid of solid particles and the effective viscous stress 

tensor of the solid particles due to their random motion. In addition to 

of 
pP 

this stress tensor, we have the body force $I i which is due to the 

difference of the velocities c from the flow velocity of the gas 

The energy flux of the pseudo-fluid of solid particles 

j 

(viii) 

qpi = I mp(rp) cs(B - Tp) (ci - u ) Fp d 3 c de dr . 
Pi j P 

This energy flux is due to the random distribution of temperature and 

random motion of the solid particles in the mixture oE gas and solid 

particles and it is the additional heat flux to the heat transfer Q 

Eq, ( 4 6 )  which is the heat transfer over the mean flow velocity and mean 

of 
P 

temperature of the gas. Furthermore, we may have additional heat con- 

duction flux due to the third moment of the fluctuation velocity 

as in the case of ordinary kinetic theory of gases. 

cicjck 

With the definitions of these macroscopic quantities of ( 4 0 )  to 

( 4 8 ) ,  we may obtain the transfer equations by taking moments of both sides 

of the Boltzmann equation (39) as follows: 

(i) Equation of continuity, For the zeroth moment, we multiply 

Eq. (39) by m (r ) and integrate the resultant equations with respect 

to d c over the whole velocity space, with respect to de over the 

whole temperature space and with respect to r 

P P  
3 
j 

over the diameter space and P 
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we o b t a i n  t h e  equat ion  of t h e  pseudo-fluid of s o l i d  p a r t i c l e s  i n  the  same 

gmnner as t h a t  f o r  gasdynamical equat ion  of contu i ty :  15, 16 

- 
where m n = Z psp by Eq. (13) and - 0 i s  the  term due t o  the  

i n t e g r a t i o n  of t h e  c o l l i s i o n  terms 

i d e n t i c a l  t o  Eq, (21) except t h a t  w e  may c a l c u l a t e  t h e  source func t ion  

ff 

P P  P 
M") - M (-) e Hence Eq. (49) i s  

P P 

i f  we have t h e  exac t  express ion  f o r  t h e  c o l l i s i o n  terms. 
P 

( i i )  Equations of motion. 

For t h e  f i r s t  moment, we mul t ip ly  Eq. (39) by mpci 

t e g r a t e  the  r e s u l t i n g  equat ion wi th  r e spec t  t o  d c * dB d r  over a l l  

t h e s e  spaces as i n  t h e  case of ze ro th  order  moment and o b t a i n  t h e  

equat ion  of motion of t h e  pseudo-fluid of s o l i d  p a r t i c l e s  as fo l lows;  

and in-  
3 

j P 

as 

j 
= + Fpi ax 

- a  a - A - f f z  
P P a t  P j  axj P i  P P i  

m n ( -  + u  -)u 

where t h e  stress t enso r  of t h e  pseudo-fluid may be wr i t ten  as 

Hence Eq. (50) i s  p r a c t i c a l l y  i d e n t i c a l  t o  Eq. (26) except t h a t  w e  do 

no t  cons ider  t h e  body f o r c e  such as g r a v i t a t i o n a l  f o r c e  i n  Eq. (50) nor 

i n  t h e  Boltzmann equat ion  (39) .  

g r a v i t a t i o n a l  f o r c e  i n  t h e  expression 

corresponding f o r c e  F 

i d e n t i c a l .  The term 0 2 is given by t h e  i n t e g r a t i o n  of t h e  c o l l i s i o n  

terms a 

I f  we inc lude  t h e  body f o r c e  such as 

Oi of Eq. (39),  we  w i l l  have the  

i n  Eq. (50) s o  t h a t  Eqs. (26) and (50) are 
b p i  

P P i  
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( i i i )  Equation of energy. 

Because t h e  temperature of t he  s o l i d  p a r t i c l e s  i s  n o t  defined i n  

terms of i ts  random t r a n s h r i o n a l  motion, b u t  t he  i n t e r n a l  degree of f r e e -  

dom ( c f .  Eq. ( 4 3 ) ) ,  t h e  i n t e r n a l  energy of t he  pseudo-fluid of s o l i d  

p a r t i c l e s  may be considered of two p a r t s  as follows: 

u = u  mpl + u  mp2 (52) mP 

where U = c T = i n t e r n a l  energy due t o  t h e  i n t e r n a l  degree 
mpl of freedom of t h e  p a r t i c l e  whose average 

temperature of p a r t i c l e s  a t  x and t 
is T , which is def ined  by Eq! ( 4 3 ) .  

P 

and de d r  u mp2 = - m n  j I j li mp(ck - upk) (ck - u pk) Fp j P 
P P  

= c T where c may be considered as an e f f e c t i v e  

s p e c i f i c  h e a t  a t  cons tan t  volume of t h e  pseudo-fluid 
of s o l i d  p a r t i c l e s  due t o  random t r a n s l a t i o n a l  motion. 
For f i r s tapproximat ion ,  w e  may asswe t h a t  c i s  a 

VP P VP 

cons tan t  e VP 

It should be no t i ced  t h a t  U i s  of t h e  same order  of magnitude as 

pp/Fp e Now w e  are going t o  d e r i v e  an equat ion  which governs 

another  equat ion  which governs U 

v a r i a t i o n  of t h e  t o t a l  i n t e r n a l  energy of t h e  pseudo-fluid of s o l i d  

particles U given i n  Eq. (35). 

mP2 
U and 
mP1 

i n  order  t o  g e t  an equat ion  f o r  t h e  
mP2 

mP 

w e  mul t ip ly  Eq. (39) by m c 8 and i n t e g r a t e  t h e  
mpl’ P S  

For U 
3 

r e s u l t a n t  equat ion  wi th  r e spec t  t o  d c * de e d r  over t h e  v e l o c i t y ,  

temperature and r ad ius  spaces and ob ta in  t h e  following equat ion  f o r  

j P 
U 

m P l  a 
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where 

and q and Q are given respectively by Eqs. ( 4 8 )  and (46) .  
Pi P 

2 For U we multiply Eq. (39) by % m c and integrate 
mP2 P k  

3 the resultant equation with respect to d c. de dr over the whole 

velocity, temperature and radius spaces and obtain the following equation 

mP2 
for U 

J P 

2 - a 
) +ax [u .rq n (U + %. u ) ]  = 

2 a -  - 
- ( m n U  + % . m n u  
a t .  P P mP2 P P Pk PJ P P mP2 Pk j 

(55) 

where 

= heat conduction flux of the pseudo-fluid of solid 

part icles due to random motion 

and and F are given respectively by Eqs. ( 4 5 )  and ( 4 4 ) .  
P Pi 

If we add Eqs. (53) and (55), we obtain the energy equation for 

the pseudo-fluid of solid particles, which is identical to Eq. (35). 

we neglect the potential energy which we do not include in our derivation 

of Boltzmann equation (39) and use the following relations: 

If 
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Hence w e  have some confidence i n  Eq. (35) obtained from the  continuum 

theory poin t  of view and f u r t h e r  w e  have more information about t he  

terms such as the  hea t  conduction f l u x  of t he  pseudo-fluid of s o l i d  

p a r t i c l e s  

conduction from the  s o l i d  p a r t i l c e s  t o  the  gas and the  o the r  i s  due t o  

the  random motion of t he  s o l i d  p a r t i c l e s ,  

which cons i s t s  of two p a r t s :  one i s  due t o  t h e  hea t  
‘cpj 

Formally, w e  may der ive  t h e  equat ions f o r  
Sij 

qpi e tc . ,  i n  

a similar manner as i n  ordinary k i n e t i c  theory of gases  as descr ibed i n  

re ferences  15 and 1 6 ,  Since w e  do not  know t h e  exact  f o r m  f o r  t he  

c o l l i s i o n  terms [HP (+) - Mc-)]  and w e  s h a l l  neglec t  tne stress tensor  of 

pseudo-fluid of s o l i d  p a r t i c l e s  Sij except the par t ia l  pressure  

which i s  propor t iona l  t o  Z w e  do not  d e r i v e  these equat ions here. It 

should be  not iced  t h a t  i f  w e  have a d d i t i o n a l  body fo rces  o the r  than due t o  

P 

pP 

the  i n t e r a c t i o n  of s o l i d  p a r t i c l e s  and gas molecules, w e  may have o ther  

body fo rces  i n  t h e  equat ion of motion such as g r a v i t a t i o n a l  fo rce  i n  

Eq. (26) and t h e  p o t e n t i a l  energy tenus i n  t h e  energy equat ion (35), 

5. Some s impl i f i ca t ions  of t he  fundamental equat ions o t  t h e  mixture of 

a gas wi th  s m a l l  s o l i d  p a r t i c l e s .  

I n  t h i s  s ec t ion ,  w e  are going t o  de r ive  some s imple  r e l a t i o n s  

f o r  t h e  mixture  of a gas and pseudo-fluid of s o l i d  particles from the  

fundamental equat ions which w e  de r ive  i n  the  last  two sec t ions ,  First 

w e  consider  a few b a s i c  thermodynamic r e l a t i o n s  of t h e  mixture  of pseudo- 

f l u i d  of s o l i d  p a r t i c l e s  and a gas and then t h e  case where t h e  f r a c t i o n  

volume Z i s  very small. 

(a) Thermodynamics of t h e  mixture  of s o l i d  p a r t i c l e s  and gas,  

We consider  t h e  mixture of small s o l i d  par t ic les  and a gas as a 

mixture of a pseudo-fluid of s o l i d  p a r t i c l e s  and a gas. We are going t o  
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f i n d  some thermodynamic r e l a t i o n s  of t h e  mixture  as a whole 8 i n  terms 

of p r o p e r t i e s  of t h e  two spec ies  and volume f r a c t i o n  Z of t he  s o l i d  

p a r t i c l e s  o r  t h e  mass concentrat ion of t he  s o l i d  p a r t i c l e s  

of t h e  rnixture as a whole i s :  

k The dens i ty  
P 

- 
where w e  assume m = m e 

P P  
We de f ine  the  mass concentrat ion of t he  pseudo-fluid of s o l i d  

p a r t i c l e s  as follows: 
- 

ZP 
k =:%=A 

P Pi4 PM 

The pressure  of t h e  mixture  as a whole i s  

?H = P = P p + P g  ' (62) 

From Eqs .  (18) , (60) and (61),  w e  f i n d  a r e l a t i o n  between the pressure 

of t h e  mixture  and t h e  dens i ty  of t he  mixture as follows: 

%%IT 
P 1 - Z 'MRTg 1 - z  

1 - k  
=P = &  

where 

f l u i d  of s o l i d  p a r t i c l e s .  

f r a c t i o n  of t he  s o l i d  p a r t i c l e s  i s  negig ib ly  small, t he  pe r fec t  gas l a w  

holds  f o r  t he  mixture  when an  e f f e c t i v e  gas cons tan t  % i s  used. For  

many engineer ing problems, w e  do have very  small va lue  f o r  Z b u t  k 

i s  no t  n e g l i g i b l e  i n  comparison t o  un i ty .  On the  o ther  hand, i f  Z i s  

RM may be  considered as an e f f e c t i v e  gas constant  of the pseudo- 

It is i n t e r e s t i n g  t o  no t i ce  t h a t  i f  t h e  volume 

P 
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not negligibly small in comparison to unity, the volume fraction of the 

solid particles does affect the equation of state of the mixture as a 

whole because Z is a function of 

Since the temperature of the solid particles does not associate 
'M 

with the random kinetic energy of the particles and the temperature of 

the gas does relate with its random kinetic energy, it is not profitable 

to define a temperature of the mixture as a whole as in the usual treat- 

ment of a mixture of two gases. 15 

one for the gas T and one for the pseudo-fluid of solid particles T e 

. In the equilibrium condition, these two temperature are, of course, equal, 

Thus we retain the two temperatures: 

g P 

i.e., T = T = T e In the general case, we shall write T = T for 
g P  g 

simplicity and T may be equal to or different from T a 

The internal energy of the mixture per unit mass 
P 

is related 
unlM 

to the internal energies of the two species by the following relation: 

or = k c T + (1 - kp) cVT (654 
umM P SP P 

where c = c + c and we assume that c and c are constants for 

simplicity, For equilibrium condition, we have the specific heat of the 
SP s VP SP v 

mixture at constnat volume c as follows: VM 

= k c +(l-k)cV ( 6 6 )  
VM P SP P 
C 

where c is the specific heat of the gas at constant volume. V 

The enthalpy of the mixture per unit mass 3.f is 

T + L ) + ( l - k ) c  T 
kP(CsP P Psp P P  
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where c 

For equi l ibr ium condi t ion ,  t h e  s p e c i f i c  hea t  of t he  mixture a t  constant  

pressure  i s  then 

i s  the  s p e c i f i c  hea t  of t he  gas a t  constant  pressure ,  
P 

= k c + ( 1  - kp) cP (68) PM P SP 
C 

The s p e c i f i c  hea t s  of t h e  mixture are independent of the  volume f r a c t i o n  

Z bu t  depend on t h e  m a s s  concent ra t ion  k of t he  s o l i d  p a r t i c l e s .  Tare 

r a t i o  of t h e  s p e c i f i c  h e a t s  of t h e  mixture i s  
P 

r16 
C ( 1 - k ) ~  + k  cS ( 1 + - )  

VM PI v P SP 

r = P "  = Y 
( 1 - k  c + k  c C 

e The r a t i o  r i s  s p b  
where y = c / c  

always smaller than y i f  k i s  d i f f e r e n t  from zero and as k = 1 , 

, rl = k p ( l  - k ) and 6 = c 
P V  P 

P P 
r = i ,  

I f  w e  consider  t h e  mixture  as a homogeneous medium, the  f i r s t  

l a w  of thermodynamics f o r  t h e  mixture may be wri.tten as fol lows:  

where dQ is t he  h e a t  add i t ion  t o  t h e  mixture.  Eq. (70) i s  the  energy 

equat ion of t he  mixture  as a whole. 

For i s e n t r o p i c  change of s ta te  of t h e  gas-par t ic le  mixture,  w e  

have dQ = 0 and Eq. (70) gives  

1 dpM 
r-1 T 1-z PM 

a - -  1 dT - 

Since Z = k p /p  

i n t e g r a t e d  and g ives  

f o r  constnat  k P and T P = T , E q .  ( 7 1 )  may b e  
P M SP 
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(72) 

I f  Z << 1 t h e  i s e n t r o p i c  change of s ta te  of t h e  mixture has a similar 

r e l a t i o n  as t h a t  f o r  a pure gas wi th  t h e  e f f e c t i v e  r a t i o  of s p e c i f i c  

h e a t s  a I n  gene ra l ,  t h e  volume f r a c t i o n  Z has some inf luence  on 

t h e  i s e n t r o p i c  change of t h e  mixture. 

S imi l a r ly ,  from Eq. (63) f o r  a given k and T = T , 
P P 

w e  have 

dT 1 dpM * = -  + -  - 
T pM 

. 
P 

From Eqs, (71) and (731, w e  have 

o r  

-r 
= cons tan t  . 

(73) 

(74) 

(75) 

Again, i f  Z << 1 , Eq. (75) is  i d e n t i c a l  i n  form f o r  t h e  corresponding 

r e l a t i o n  of a pure gas  but  wi th  t h e  e f f e c t i v e  r a t i o  of s p e c i f i c  h e a t s ,  

We may c a l c u l a t e  t h e  so-cal led equi l ibr ium speed of sound of 

t h e  mixture  % from Eq. (75) which is  def ined by t h e  r e l a t i o n ;  

r(l - k )RT - - 
( 1  - z)2 

The r a t i o  of t h e  equi l ibr ium sound speed of t h e  mixture 

the  gas a lone  a = yRT is  

% t o  t h a t  of  
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(b) Fundamental equat ions f o r  t h e  mixture of gas and s m a l l  s o l i d  

p a r t i c l e s  when Z << 1 e 

When t h e  volume f r a c t i o n  Z of t he  s o l i d  p a r t i c l e s  is  negl i -  

g i b l y  s m a l l  i n  t h e  mixture,  from Eq. (19),  w e  may neglec t  the  p a r t i a l  

By the  same order  of magnitude p res su re  of t h e  s o l i d  p a r t i c l e s  

estimate, w e  may a l s o  neglec t  t h e  viscous stress of t n e  pseudo-fluid 

of s o l i d  p a r t i c l e s  T and t h e  i n t e r n a l  energy U . Furthermore, 

a 

pP 

p i j  mP2 
. Even though Z << 1 , i n  order t h a t  - - 

- Pg 
from Eq. (16) w e  have 

t h e  s o l i d  p a r t i c l e s  have some inf luence  on t h e  flow f i e l d  of the mixture,  

t h e  m a s s  concent ra t ion  k of t h e  pseudo-fluid of s o l i d  p a r t i c l e s  should 

no t  be  neg l ig ib ly  s m a l l .  A s  a r e s u l t ,  from Eq. (13),  w e  do not  use Z 

as a v a r i a b l e  i n  t h e  mixture  bu t  use t h e  number dens i ty  n o r  the  

p a r t i a l  dens i ty  ‘i; 

P 

P 
as a v a r i a b l e  i n  t h e  mixture,  i . e ,  , 

P 

P ’ % ’  
Hence, w e  s t i l l  have eleven va r i ab le s :  p = pg , Tg = T , T 
- 

and u where f o r  s i m p l i c i t y  w e  w r i t e  T = T. The 
g i  g P (o r  np> upi 

P 
fundamental equat ions of t he  mixture  of a gas and s m a l l  s o l i d  p a r t i c l e s  

may be  s impl i f i ed  a l i t t l e  as follows: 

(i) Equation of s ta te  of t he  gas:  ( see  Eq. (18)) 

P = RPg T 
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(ii) Equation of continuity for the pseudo-fluid of solid 

particles. From Eq. (49), we have 

- a ( G n )  +-- a ( G n u  ) = - 0  a 

at ' P P axi P P Pi P 

(iii) Equation of continuity for the gas. Eq. (22) with 

(iv) Equations of 

particles. By neglecting the 

motion for the pseudo-fluid of solid 

partial pressure p and viscous stress 
P 

of the pseudo-fluid of solid particles, Eq. (26)becomes: 
pij 

a a 3 -t 
= F + $  - U Z  

p bP P P  
- 
m n  ( ~ + u  
P P  Pi ax, 

(v) Equations of motion for the gas. For Z << 1 , Eq. (27) 
becomes 

(vi) Equation of energy of the pseudo-fluid of solid particles, 

Stnce U is negligible, we may use Eq. (53) for the internal energy of 

the pseudo-fluid of the solid particles. With the help of Eq. (491, Eq. ( 5 3 )  

gives the equation for the internal energy of the pseudo-fluid of the 

solid particles as follows: 

mP2 
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, ( v i i )  Equation of energy of t he  gas. Eq. ( 3 6 )  with Z << 1 

becomes 
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